

Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function

Arvind U Raghunathan, Anoop Cherian, Devesh Jha <u>Mitsubishi Electric Research Labs (MERL), Cambridge, MA</u>

Problem Statement

Find $x^* = (x_1^*, x_2^*)$ such that

2-player Game*

$$x_1^* = \arg \min_{x_1 \in R^{n_1}} f_1(x_1, x_2^*)$$

$$x_2^* = \arg \min_{x_2 \in R^{n_2}} f_2(x_1^*, x_2)$$

Where do they arise?

- Economics , Mechanism Design
- Generative Adversarial Networks (GANs)
 - Min-Max optimization can be cast as 2-player game
 - Adversarial/robust problem formulations

Our Goal: Algorithms for the solution of N-player Games

Characterization of Solutions

Find
$$\mathbf{x}^* = (x_1^*, x_2^*)$$
 such that

2-player Game*

$$x_1^* = \arg\min_{\substack{x_1 \in R^{n_1}}} f_1(x_1, x_2^*)$$
$$x_2^* = \arg\min_{\substack{x_2 \in R^{n_2}}} f_2(x_1^*, x_2)$$

Nash Equilibrium: S^{NE} = {x* | above holds}
 x_i* solves player-i 's problem

Stationary Nash Points: S^{SNP} = {x* | V_if_i(x*) = 0}
 x_i* is the first-order stationary point for player-i 's problem

f_i are nonconvex $\rightarrow S^{SNP}$ are likely to be limit points of algorithms

Our Key Contributions

- 1. We propose re-formulations of the game objectives using merit functions, namely the Nikaido-Isoda (NI) function
- As optimization of NI functions is difficult, we introduce <u>Gradient-based NI functions (GNI)</u>, which is cheap and converges to Stationary Nash Points of the games.
- 3. We explore theoretical properties of GNI, providing error bounds and convergence results under various game settings.
 - Specifically, under certain conditions, we show that the solutions converge linearly.
- 4. We empirically demonstrate the usefulness of our formulations on synthetic datasets.

Our Gradient-based Nikaido-Isoda (GNI) Function

$$V(\mathbf{x}) = \sum_{i=1}^{2} V_i(\mathbf{x}) \qquad \begin{array}{l} V_1(\mathbf{x}) = f_1(x_1, x_2) - f_1(y_1(\mathbf{x}), x_2) \\ V_2(\mathbf{x}) = f_2(x_1, x_2) - f_2(x_1, y_2(\mathbf{x})) \end{array}$$

Nikaido-Isoda Function

$$y_1(\mathbf{x}) = \inf_{y_1} f_1(y_1, x_2)$$

$$y_2(\mathbf{x}) = \inf_{y_2} f_2(x_1, y_2)$$

GNI Function

$$y_1(x) = x_1 - \nabla_1 f_1(x_1, x_2)$$
$$y_2(x) = x_2 - \nabla_2 f_2(x_1, x_2)$$

$$y_2(\mathbf{x}) = x_2 - \nabla_2 f_2(x_1, x_2)$$

Evaluation of $V_i(x)$ requires only a gradient of f_i w.r.t x_i

Properties of GNI Function

$$V(\mathbf{x}) = \sum_{i=1}^{2} V_i(\mathbf{x}) \qquad V_1(\mathbf{x}) = f_1(x_1, x_2) - f_1(y_1(\mathbf{x}), x_2) \\ V_2(\mathbf{x}) = f_2(x_1, x_2) - f_2(x_1, y_2(\mathbf{x})) \\ y_1(\mathbf{x}) = x_1 - \eta \nabla_1 f_1(x_1, x_2) \\ y_2(\mathbf{x}) = x_2 - \eta \nabla_2 f_2(x_1, x_2) \end{cases}$$

$$f_i$$
 has L_f -Lipschitz gradient. If $\eta \leq \frac{1}{L_f}$ then
 $\frac{\eta}{2} \|\nabla_i f_i(\mathbf{x})\|^2 \leq V_i(\mathbf{x}) \leq \frac{3\eta}{2} \|\nabla_i f_i(\mathbf{x})\|^2$

$$V(\mathbf{x}^*) = 0$$
 if and only if $\mathbf{x}^* \in S^{SNP}$

Gradient Descent on GNI Function

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \rho \nabla V(\boldsymbol{x})$$

$$\nabla V_1(\boldsymbol{x}) = \nabla f_1(\boldsymbol{x}) - (I - \eta E_1 \nabla^2 f_1(\boldsymbol{x})) \nabla f_1(y_1(\boldsymbol{x}), x_2)$$

$$\nabla V_2(\boldsymbol{x}) = \nabla f_2(\boldsymbol{x}) - (I - \eta E_2 \nabla^2 f_2(\boldsymbol{x})) \nabla f_2(x_1, y_2(\boldsymbol{x}))$$

V has L_V -Lipschitz gradient. If $\rho \leq \frac{1}{L_V}$ then { x^k } converges sublinearly to $x^* : \nabla V(x^*) = 0$

If in addition, $V(\mathbf{x}^*) = 0$ then $\mathbf{x}^* \in S^{SNP}$

Further, if V satisfies Polyak-Lojasiewicz inequality, then $\{x^k\}$ converges linearly to $x^* : V(x^*) = 0$. e.g., Satisfied for Quadratic Games

Modified Gradient Descent on GNI Function

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \rho \nabla \hat{V}(\boldsymbol{x})$$

$$\nabla \hat{V}_1(\boldsymbol{x}) = \nabla f_1(\boldsymbol{x}) - (I - \eta E_1 \nabla^2 f_1(\boldsymbol{x})) \nabla f_1(y_1(\boldsymbol{x}), x_2)$$

$$\nabla \hat{V}_2(\boldsymbol{x}) = \nabla f_2(\boldsymbol{x}) - (I - \eta E_2 \nabla^2 f_2(\boldsymbol{x})) \nabla f_2(x_1, y_2(\boldsymbol{x}))$$

Replace with Secant Approximation

Under additional assumptions on the approximation, we recover previous results

Experiments on Two-Player Games

1. Bilinear:
$$f_1(x) = x_1^T Q x_2 + q_1^T x_1 + q_2^T x_2 = -f_2(x)$$

2. Quadratic:
$$f_i(x) = \frac{1}{2}x^TQ_ix + r_i^Tx$$
, for $i = 1, 2$

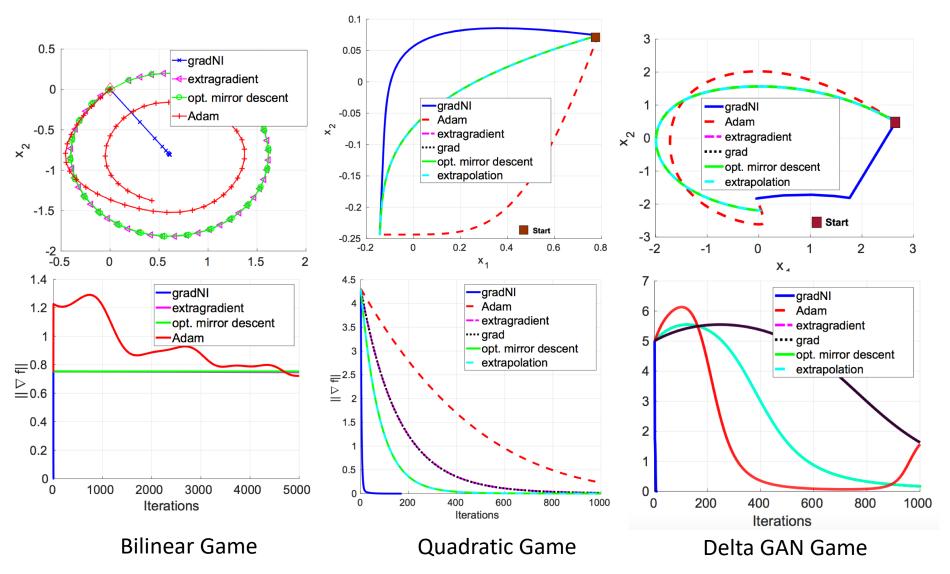
3. Delta GAN:
$$\begin{aligned} f_1 &= \log(1 + \exp(\theta x_1)) + \log(1 + \exp(x_1 x_2)) \\ f_2 &= -\log(1 + \exp(x_1 x_2)), \end{aligned}$$

4. Linear GAN:

$$f_1 = -\mathbb{E}_{\theta \sim P_r} \log \left(x_1^T \theta \right) - \mathbb{E}_{z \sim P_z} \log \left(1 - x_1^T \operatorname{diag} \left(x_2 \right) z \right)$$

$$f_2 = -\mathbb{E}_{z \sim P_z} \log \left(x_2^T \operatorname{diag} \left(x_1 \right) z \right)$$

Trajectories and Convergence Using the GNI Function



Conclusions and Future Work

- We presented a <u>novel surrogate</u> function -- Gradient-based Nikaido Isoda function for reformulating N-player games that:
 - Vanishes only at the <u>first-order</u> Nash points of the original games
 - Provide <u>error-bounds</u> for various popular game settings
- We presented <u>empirical results</u> comparing the convergence of GNI to <u>zeros of GNI function</u> (<u>Stationary Nash Points</u>).
- Future work will explore
 - Convergence of GNI in a stochastic setting
 - Constrained game payoffs
 - Applications to standard Generative adversarial networks