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Summary of Our Contributions in This Paper

 We introduce a general methodology for composing regret
minimizers

* Our approach treats the regret minimizers for individual
convex sets as black boxes
— Freedom in choosing the best regret minimizer for each individual set

* Several applications, including a significantly simpler proof of

CFR, the state-of-the-art scalable method for computing Nash
equilibrium in large extensive-form games



Regret Minimizer

Regret minimizer
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Cumulative Regret

“How well do we do against best, fixed decision in hindsight?”
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How to Construct a Regret Minimizer?
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e Several “general-purpose” regret minimizers known in the literature:
— Follow-the-regularized-leader [Shalev-Schwartz and Singer 2007]
— Online mirror descent
— Online projected gradient descent [Zinkevich 2003]

— For simplex domains in particular: regret matching [Hart and Mas-Colell 2000], regret
matching+ [Tammellin, Burch, Johanson and Bowling 2000], ...

 Drawbacks of general-purpose methods:

— Need a notion of projection onto the domain of decisions --- this can be
expensive in practice!

— Monolithic: they cannot take advantage of the specific (combinatorial) structure
of their domain



Calculus of Regret Minimization

Idea: can we construct regret minimizers for composite sets by
combining regret minimizers for the individual atoms?




Easy example: Cartesian product

* How to build a regret minimizer for X X Y given one for X and
one for Y?
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Harder Example: Convex Hull

* How to build a regret minimizer for the convex hull of X and Y
given one for X and one for Y?
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Intermezzo: Deriving CFR

Counterfactual regret minimization (CFR) is a family of regret minimizers,

specifically tailored for extensive-form games [zinkevich, Bowling, Johanson and
Piccione 2007]

Practical state of the art for the past 10+ years in large games

— One of the key technologies that allowed to solve large Heads-Up Limit and No-Limit
Texas Hold’Em [Bowling, Burch, Johanson and Tammelin 2015] [Brown and Sandholm 2017]

Main insight: break down regret and minimize it locally at each decision point
in the game

We can recover the whole, exact CFR algorithm by simply composing
the Cartesian product and convex hull circuits

— This also includes newer variants such as CFR+ [Tammellin, Burch, Johanson and
Bowling 2015] and DCFR [Brown and Sandholm 2019]



Intermezzo: Deriving CFR

ldea: the space of strategies of a player can be expressed
inductively by using convex hulls and Cartesian products
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Calculus of Regret Minimization (cont’d)

e What about intersections and constraint satisfaction? We
show two different circuits:

— Approximate circuit using Lagrangian relaxation
— Exact circuit using (generalized) projections



Constraint Satisfaction (Lagrangian Relaxation)

* How to build a regret minimizer for X N {x: g(x) < 0} given
one for X?

F—1 é’t—l : t

£, >? ° o (X, L) — "
E k- . [5 i g(xt) >0
: B~ (0g(x""1), ) 7 Bo = 0 otherwise

Penalization term!
How feasible was the last recommendation?




Intersection Circuit

* Want feasibility? Project onto the feasible set!
* Generalized projections (proximal operators) can be used as well
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 Takeaway: we can always turn an infeasible regret minimizer into a
feasible one by projecting onto the feasible set, outside the loop!



Second Intermezzo: CFR with Strategy Constraints

* The recent Constrained CFR algorithm [Davis, waugh and Bowling, 2019]
can be constructed as a special example via our framework, by
using the Lagrangian relaxation circuit

* Our exact (feasible) intersection construction leads to a new
algorithm for the same problem as well

* Tradeoff between feasibility and computational cost
— Projections are expensive in general
— Feasibility might be crucial depending on the application



Another Application: Optimistic/Predictive Regret
Minimization
* A related calculus of regret minimization can be designed for
optimistic regret minimization

e Optimistic regret minimization breaks the learning-theoretic

barrier O(T~1/?) on the convergence rate of regret-based
approaches

 We use our calculus to prove that under certain hypotheses
CFR can be modified to have a convergence rate of O (T ~3/4)

to Nash equilibrium, instead of O(T~/2) as in the original
(nOn-OptimiStiC) version [Farina, Kroer, Brown and Sandholm, 2019]



Another Application: Extensive-Form Perfect
Equilibrium

* We give the first efficient regret minimizer for computing
extensive-form correlated equilibrium in large two-player games

[Farina, Ling, Fang and Sandholm, under review]

— Solution concept in which the game is augmented with a mediator that can recommend behavior but
not enforce it --- recommended behavior must be incentive compatible

— Can lead to very interesting/nonviolent behavior in extensive-form games such as Battleship

 Significantly more challenging than designing one for the Nash
equilibrium counterpart, as the constraints that define the space of
correlated strategies lack the hierarchical structure and might even
form cycles

— We unroll this space without using intersection!



Another Application: Extensive-Form Perfect
Equilibrium

 We use a different regret circuit, for a convexity-preserving
operation that we call scaled extension
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Conclusions

* We initiated the study of a calculus of regret minimizers

— Regret minimizers are combined as black boxes. Freedom to chose the best algorithm
for each set that is being composed

— In the paper we show regret circuits for several convexity-preserving operations (convex
hull, Cartesian product, affine transformations, intersections, Minkowski sums, ...)

* Our framework has many applications:

— CFR, the state-of-the-art algorithm for Nash equilibrium in large games, falls out almost
trivially as a repeated application of only two circuits

— Improves on the recent ‘CFR with strategy constraints’ algorithm

— Leads to the first CFR variant to beat the O(T‘l/z) convergence rate when computing
Nash equilibria

— Gives the first efficient regret minimizer for extensive-form correlated equilibrium in
large games



Future research

Full generality over the class of functions
— Most circuits assume linear losses
— What about general convex losses?

Deriving a full calculus of optimistic/predictive regret minimization

— So far: only convex hulls and Cartesian products
Improving on the intersection construction in special cases
More circuits for specialized applications
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