Regret Circuits: Composability of Regret Minimizers

Gabriele Farina¹ Christian Kroer² Tuomas Sandholm^{1,3,4,5}

¹ Computer Science Department, Carnegie Mellon University
² IEOR Department, Columbia University
³ Strategic Machine, Inc.
⁴ Strategy Robot, Inc.
⁵ Optimized Markets, Inc.

Summary of Our Contributions in This Paper

- We introduce a general methodology for composing regret minimizers
- Our approach treats the regret minimizers for individual convex sets as black boxes

– Freedom in choosing the best regret minimizer for each individual set

 Several applications, including a significantly simpler proof of CFR, the state-of-the-art scalable method for computing Nash equilibrium in large extensive-form games

Regret Minimizer

Cumulative Regret

"How well do we do against **best, fixed** decision in hindsight?"

How to Construct a Regret Minimizer?

- Several "general-purpose" regret minimizers known in the literature:
 - Follow-the-regularized-leader [Shalev-Schwartz and Singer 2007]
 - Online mirror descent
 - Online projected gradient descent [Zinkevich 2003]
 - For simplex domains in particular: regret matching [Hart and Mas-Colell 2000], regret matching+ [Tammellin, Burch, Johanson and Bowling 2000], ...
 - ...
- Drawbacks of general-purpose methods:
 - Need a notion of **projection** onto the domain of decisions --- this can be expensive in practice!
 - Monolithic: they cannot take advantage of the specific (combinatorial) structure of their domain

Calculus of Regret Minimization

Idea: can we construct regret minimizers for composite sets by combining regret minimizers for the individual atoms?

Easy example: Cartesian product

• How to build a regret minimizer for *X* × *Y* given one for *X* and one for *Y*?

Harder Example: Convex Hull

• How to build a regret minimizer for the convex hull of X and Y given one for X and one for Y?

Idea: extra regret minimizer decides how to mix the decisions on X and Y

Intermezzo: Deriving CFR

- Counterfactual regret minimization (CFR) is a family of regret minimizers, specifically tailored for **extensive-form games** [Zinkevich, Bowling, Johanson and Piccione 2007]
- Practical state of the art for the past 10+ years in large games
 - One of the key technologies that allowed to solve large Heads-Up Limit and No-Limit Texas Hold'Em [Bowling, Burch, Johanson and Tammelin 2015] [Brown and Sandholm 2017]
- Main insight: break down regret and minimize it locally at each decision point in the game
- We can recover the whole, exact CFR algorithm by simply composing the Cartesian product and convex hull circuits
 - This also includes newer variants such as CFR+ [Tammellin, Burch, Johanson and Bowling 2015] and DCFR [Brown and Sandholm 2019]

Intermezzo: Deriving CFR

• Idea: the space of strategies of a player can be expressed inductively by using convex hulls and Cartesian products

Calculus of Regret Minimization (cont'd)

- What about **intersections and constraint satisfaction**? We show two different circuits:
 - Approximate circuit using Lagrangian relaxation
 - Exact circuit using (generalized) projections

Constraint Satisfaction (Lagrangian Relaxation)

• How to build a regret minimizer for $X \cap \{x: g(x) \le 0\}$ given one for X?

Intersection Circuit

- Want feasibility? Project onto the feasible set!
- Generalized projections (proximal operators) can be used as well

• Takeaway: we can always turn an infeasible regret minimizer into a feasible one by projecting onto the feasible set, **outside the loop**!

Second Intermezzo: CFR with Strategy Constraints

- The recent Constrained CFR algorithm [Davis, Waugh and Bowling, 2019] can be constructed as a special example via our framework, by using the Lagrangian relaxation circuit
- Our exact (feasible) intersection construction leads to a new algorithm for the same problem as well
- Tradeoff between feasibility and computational cost
 - Projections are expensive in general
 - Feasibility might be crucial depending on the application

Another Application: Optimistic/Predictive Regret Minimization

- A related calculus of regret minimization can be designed for **optimistic** regret minimization
- Optimistic regret minimization breaks the learning-theoretic barrier $O(T^{-1/2})$ on the convergence rate of regret-based approaches
- We use our calculus to prove that under certain hypotheses CFR can be modified to have a convergence rate of $O(T^{-3/4})$ to Nash equilibrium, instead of $O(T^{-1/2})$ as in the original (non-optimistic) version [Farina, Kroer, Brown and Sandholm, 2019]

Another Application: Extensive-Form Perfect Equilibrium

 We give the first efficient regret minimizer for computing extensive-form correlated equilibrium in large two-player games

[Farina, Ling, Fang and Sandholm, under review]

- Solution concept in which the game is augmented with a mediator that can recommend behavior but not enforce it --- recommended behavior must be incentive compatible
- Can lead to very interesting/nonviolent behavior in extensive-form games such as Battleship
- Significantly more challenging than designing one for the Nash equilibrium counterpart, as the constraints that define the space of correlated strategies lack the hierarchical structure and might even form cycles
 - We unroll this space without using intersection!

Another Application: Extensive-Form Perfect Equilibrium

• We use a different regret circuit, for a convexity-preserving operation that we call **scaled extension**

Conclusions

- We initiated the study of a calculus of regret minimizers
 - Regret minimizers are combined as black boxes. Freedom to chose the best algorithm for each set that is being composed
 - In the paper we show regret circuits for several convexity-preserving operations (convex hull, Cartesian product, affine transformations, intersections, Minkowski sums, ...)
- Our framework has many applications:
 - CFR, the state-of-the-art algorithm for Nash equilibrium in large games, falls out almost trivially as a repeated application of only two circuits
 - Improves on the recent 'CFR with strategy constraints' algorithm
 - Leads to the first CFR variant to beat the $O(T^{-1/2})$ convergence rate when computing Nash equilibria
 - Gives the first efficient regret minimizer for extensive-form correlated equilibrium in large games

Future research

- Full generality over the class of functions
 - Most circuits assume linear losses
 - What about general convex losses?
- Deriving a full calculus of *optimistic/predictive* regret minimization
 So far: only convex hulls and Cartesian products
- Improving on the intersection construction in special cases
- More circuits for specialized applications

Poster: Pacific Ballroom #150 06:30 - 09:00 pm