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Summary of Our Contributions in This Paper

• We introduce a general methodology for composing regret 
minimizers

• Our approach treats the regret minimizers for individual 
convex sets as black boxes

– Freedom in choosing the best regret minimizer for each individual set

• Several applications, including a significantly simpler proof of 
CFR, the state-of-the-art scalable method for computing Nash 
equilibrium in large extensive-form games



Regret Minimizer
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Cumulative Regret

“How well do we do against best, fixed decision in hindsight?”
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How to Construct a Regret Minimizer?

• Several “general-purpose” regret minimizers known in the literature:
– Follow-the-regularized-leader [Shalev-Schwartz and Singer 2007]

– Online mirror descent

– Online projected gradient descent [Zinkevich 2003]

– For simplex domains in particular: regret matching [Hart and Mas-Colell 2000], regret 
matching+ [Tammellin, Burch, Johanson and Bowling 2000], …

– …

• Drawbacks of general-purpose methods:
– Need a notion of projection onto the domain of decisions --- this can be 

expensive in practice!

– Monolithic: they cannot take advantage of the specific (combinatorial) structure 
of their domain



Calculus of Regret Minimization

Idea: can we construct regret minimizers for composite sets by 
combining regret minimizers for the individual atoms?



Easy example: Cartesian product

• How to build a regret minimizer for 𝑋 × 𝑌 given one for 𝑋 and 
one for 𝑌?

𝑅𝑇 = 𝑅𝑋
𝑇 + 𝑅𝑌

𝑇



Harder Example: Convex Hull

𝑅𝑇 ≤ 𝑅Δ2
𝑇 +max{𝑅𝑋

𝑇 , 𝑅𝑌
𝑇}

• How to build a regret minimizer for the convex hull of 𝑋 and 𝑌
given one for 𝑋 and one for 𝑌?

Idea: extra regret minimizer 
decides how to mix the 

decisions on X and Y



Intermezzo: Deriving CFR

• Counterfactual regret minimization (CFR) is a family of regret minimizers, 
specifically tailored for extensive-form games [Zinkevich, Bowling, Johanson and 
Piccione 2007]

• Practical state of the art for the past 10+ years in large games
– One of the key technologies that allowed to solve large Heads-Up Limit and No-Limit 

Texas Hold’Em [Bowling, Burch, Johanson and Tammelin 2015] [Brown and Sandholm 2017]

• Main insight: break down regret and minimize it locally at each decision point 
in the game

• We can recover the whole, exact CFR algorithm by simply composing 
the Cartesian product and convex hull circuits
– This also includes newer variants such as CFR+ [Tammellin, Burch, Johanson and 

Bowling 2015] and DCFR [Brown and Sandholm 2019]



Intermezzo: Deriving CFR

• Idea: the space of strategies of a player can be expressed 
inductively by using convex hulls and Cartesian products



Calculus of Regret Minimization (cont’d)

• What about intersections and constraint satisfaction? We 
show two different circuits:

– Approximate circuit using Lagrangian relaxation

– Exact circuit using (generalized) projections



Constraint Satisfaction (Lagrangian Relaxation)

• How to build a regret minimizer for 𝑋 ∩ {𝒙: 𝑔 𝒙 ≤ 0} given 
one for 𝑋?

Penalization term!
How feasible was the last recommendation?



Intersection Circuit

• Want feasibility? Project onto the feasible set!

• Generalized projections (proximal operators) can be used as well

• Takeaway: we can always turn an infeasible regret minimizer into a 
feasible one by projecting onto the feasible set, outside the loop! 

Penalization term:



Second Intermezzo: CFR with Strategy Constraints

• The recent Constrained CFR algorithm [Davis, Waugh and Bowling, 2019] 

can be constructed as a special example via our framework, by 
using the Lagrangian relaxation circuit

• Our exact (feasible) intersection construction leads to a new 
algorithm for the same problem as well

• Tradeoff between feasibility and computational cost

– Projections are expensive in general

– Feasibility might be crucial depending on the application



Another Application: Optimistic/Predictive Regret 
Minimization

• A related calculus of regret minimization can be designed for 
optimistic regret minimization

• Optimistic regret minimization breaks the learning-theoretic 
barrier 𝑂(𝑇−1/2) on the convergence rate of regret-based 
approaches

• We use our calculus to prove that under certain hypotheses 
CFR can be modified to have a convergence rate of 𝑂(𝑇−3/4)
to Nash equilibrium, instead of 𝑂(𝑇−1/2) as in the original 
(non-optimistic) version [Farina, Kroer, Brown and Sandholm, 2019]



Another Application: Extensive-Form Perfect 
Equilibrium

• We give the first efficient regret minimizer for computing 
extensive-form correlated equilibrium in large two-player games 
[Farina, Ling, Fang and Sandholm, under review]

– Solution concept in which the game is augmented with a mediator that can recommend behavior but 
not enforce it --- recommended behavior must be incentive compatible

– Can lead to very interesting/nonviolent behavior in extensive-form games such as Battleship

• Significantly more challenging than designing one for the Nash 
equilibrium counterpart, as the constraints that define the space of 
correlated strategies lack the hierarchical structure and might even 
form cycles
– We unroll this space without using intersection!



Another Application: Extensive-Form Perfect 
Equilibrium

• We use a different regret circuit, for a convexity-preserving 
operation that we call scaled extension



Conclusions

• We initiated the study of a calculus of regret minimizers
– Regret minimizers are combined as black boxes. Freedom to chose the best algorithm 

for each set that is being composed
– In the paper we show regret circuits for several convexity-preserving operations (convex 

hull, Cartesian product, affine transformations, intersections, Minkowski sums, …)

• Our framework has many applications:
– CFR, the state-of-the-art algorithm for Nash equilibrium in large games, falls out almost 

trivially as a repeated application of only two circuits
– Improves on the recent ‘CFR with strategy constraints’ algorithm
– Leads to the first CFR variant to beat the 𝑂(𝑇−1/2) convergence rate when computing 

Nash equilibria
– Gives the first efficient regret minimizer for extensive-form correlated equilibrium in 

large games



Future research

• Full generality over the class of functions

– Most circuits assume linear losses

– What about general convex losses?

• Deriving a full calculus of optimistic/predictive regret minimization

– So far: only convex hulls and Cartesian products

• Improving on the intersection construction in special cases

• More circuits for specialized applications
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