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Motivation

= Companies frequently release new products to learn customers’ rapidly changing
preferences

"= New products carry more risks compared to existing products:

— No history

— Some with lower revenue as they could be intentionally priced low to attract
customers

= Key research question: How can a company quickly learn customers’ preferences
while mitigating the risks inherent in new products?
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Our Contributions

" We approach this problem as an online learning task

—Seller’s decision: which products to offer and how to display them
—Seller’s goal: maximize cumulative profit

" The setting is different from traditional literature
—Frequent new product launches
—Minimum learning criteria

" We show that a judicious choice of presenting products is capable of mitigating
some costs associated with learning new products
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Optimized Display of Multi-tiered Assortment

Landing page with 2-tier assortment
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Online learning with Minimum Learning Criterion

" Characterization of the optimal sequence: Profit-ordered by tier
® Minimum learning criterion: Within € accuracy with probability at least 1 — 6

" Optimal placement strategy: Display new product with low profit to the
second tier

" Regret analysis

The regret during time [0, 7] is bounded above by

Reg,(T;v) < CKlog*(KT) 4+ C/TK log(KT) + M Z Vi (Trmaz — Ti)
i€ X
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