IBM Research

Dynamic Learning with Frequent New Product Launches: A Sequential Multinomial Logit Bandit Problem

Junyu Cao* Wei Sun⁺

*University of California, Berkeley *IBM Thomas J. Watson Research Center

Motivation

BERKELEY

Companies frequently release new products to learn customers' rapidly changing preferences

- New products carry more risks compared to existing products:
 - No history
 - Some with lower revenue as they could be intentionally priced low to attract customers
- Key research question: How can a company quickly learn customers' preferences while mitigating the risks inherent in new products?

Our Contributions

We approach this problem as an online learning task

- -Seller's decision: which products to offer and how to display them
- -Seller's goal: maximize cumulative profit
- The setting is different from traditional literature
 - -Frequent new product launches
 - -Minimum learning criteria
- We show that a judicious choice of presenting products is capable of mitigating some costs associated with learning new products

Optimized Display of Multi-tiered Assortment

Landing page with 2-tier assortment

Primary assortment are

displayed prominently to grab viewers' attention first, e.g., centrally positioned products with enlarged graphics, videos

Secondary assortment

products are considered *after* primary assortment products

first tier

Online learning with Minimum Learning Criterion

- Characterization of the optimal sequence: Profit-ordered by tier
- Minimum learning criterion: Within ϵ accuracy with probability at least 1δ
- Optimal placement strategy: Display new product with low profit to the second tier
- Regret analysis

The regret during time [0, T] is bounded above by $Reg_{\pi}(T; \mathbf{v}) \leq CK \log^{2}(KT) + C\sqrt{TK \log(KT)} + M \sum_{i \in X} v_{i}(r_{max} - r_{i})$

IBM Research

To find out more...

Poster Session:

Wed Jun 12th 06:30 -- 09:00 PM @ Pacific Ballroom #130

