Bilinear Bandits with Low-rank Structure

Kwang-Sung Jun

Boston University (will join the U of Arizona)

UW-Madison

Application: Drug discovery

proteins

- Choose a pair to experiment with

Application: Drug discovery

drugs

- Choose a pair to experiment with

proteins

- Goal: Find as many pairs with the desired interaction as possible

online dating

clothing recommendation

Bilinear bandits

$$
\begin{gathered}
y=x^{\top} \Theta z+\eta \\
\text { desired interaction? (0/1) drug features protein features } \\
\text { unknown parameter }(d \text { by } d)
\end{gathered}
$$

- A natural model: already used for predicting drug-protein interaction.
[Luo et al., "A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information", Nature Communications, 2017]

Bilinear bandits

$$
\begin{gathered}
y=x^{\top} \Theta z+\eta \\
\text { desired interaction? (0/1) drug features protein features } \\
\text { unknown parameter }(d \text { by } d)
\end{gathered}
$$

- A natural model: already used for predicting drug-protein interaction.
[Luo et al., "A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information", Nature Communications, 2017]
- Issue: d^{2} number of unknowns
- What if $\operatorname{rank}(\Theta) \ll d$?

$$
\Theta=\sum_{k=1}^{r} \sigma_{i} u_{i} v_{i}^{\top} \quad \square \sim d r \text { unknowns }
$$

- Many real-world problems exhibit the low-rank structure.

Summary of the result

- A naïve method: reduction

$$
\mathbb{E}[y]=x^{\top} \Theta z=\left\langle\operatorname{vec}(\Theta), \operatorname{vec}\left(x z^{\top}\right)\right\rangle
$$

- Invoking linear algorithms [Abbasi-Yadkori'11], convergence rate is

$$
\frac{d^{2}}{\sqrt{T}}
$$

- No dependence of the rank r

Summary of the result

- A naïve method: reduction

$$
\mathbb{E}[y]=x^{\top} \Theta z=\left\langle\operatorname{vec}(\Theta), \operatorname{vec}\left(x z^{\top}\right)\right\rangle
$$

- Invoking linear algorithms [Abbasi-Yadkori'11], convergence rate is

$$
\frac{d^{2}}{\sqrt{T}}
$$

- No dependence of the rank r
- Can we obtain faster rates as the rank r becomes smaller?

Summary of the result

- A naïve method: reduction

$$
\mathbb{E}[y]=x^{\top} \Theta z=\left\langle\operatorname{vec}(\Theta), \operatorname{vec}\left(x z^{\top}\right)\right\rangle
$$

- Invoking linear algorithms [Abbasi-Yadkori'11], convergence rate is

$$
\frac{d^{2}}{\sqrt{T}}
$$

- No dependence of the rank r
- Can we obtain faster rates as the rank r becomes smaller?

$$
\text { YES, we achieve } \frac{d^{3 / 2} \sqrt{r}}{\sqrt{T}} \quad \text { (factor } \sqrt{d / r} \text { better) }
$$

- Is this optimal?

Explore-Subspace-Then-Refine (ESTR)

- Stage 1: estimate the subspace

- Stage 2: linear bandit within the "subspace"

Explore-Subspace-Then-Refine (ESTR)

- Stage 1: estimate the subspace

- Stage 2: linear bandit within the "subspace"
- Turns out, it doesn't work.
- Our solution: allow "refining" the subspace.
- The devil is in the detail.

Explore-Subspace-Then-Refine (ESTR)

- Stage 1: estimate the subspace

- Stage 2: linear bandit within the "subspace"
- Turns out, it doesn't work.
- Our solution: allow "refining" the subspace.
- The devil is in the detail.

Let's chat.
\#127
@ Pacific Ballroom

