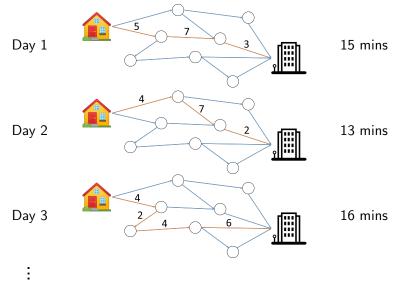
Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously

Julian Zimmert (University of Copenhagen) Haipeng Luo (University of Southern California) **Chen-Yu Wei** (University of Southern California)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semi-bandits Example



Goal: minimize the average commuting time

Types of Environments

adversarial

Algorithms for i.i.d.: perform bad in the adversarial case. Algorithms for adversarial: when the environment is i.i.d., they do not take advantage of it.

Types of Environments

adversarial

Algorithms for i.i.d.: perform bad in the adversarial case. Algorithms for adversarial: when the environment is i.i.d., they do not take advantage of it.

 \Rightarrow To achieve optimal performance, they need to know which environments they are in and pick the corresponding algorithms.

Motivation

What if

- 1. We have no prior knowledge about the environment.
- 2. The environment is usually i.i.d., but we want to be robust to adversarial attack.
- 3. The environment is usually arbitrary but we want to exploit the benignness when we got lucky.

Our Results

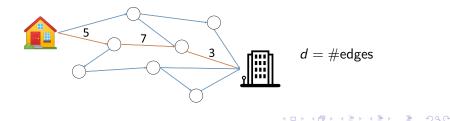
We propose the first semi-bandit algorithm that has optimal performance guarantees in both i.i.d. and adversarial environments, without knowing which environment it is in.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given: action set
$$\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots\} \subseteq \{0, 1\}^d$$
.

For t = 1, ..., T,

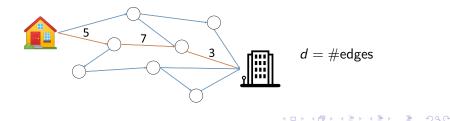
- The learner chooses $X_t \in \mathcal{X}$
- The environment reveals ℓ_{ti} for which $X_{ti} = 1$.
- The learner suffers loss $\langle X_t, \ell_t \rangle$.



Given: action set $\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots\} \subseteq \{0, 1\}^d$. (set of all paths) For $t = 1, \ldots, T$, The learner chooses $X_t \in \mathcal{X}$.

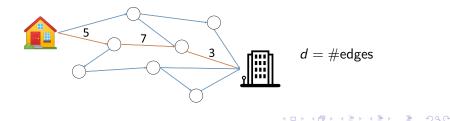
• The environment reveals ℓ_{ti} for which $X_{ti} = 1$.

• The learner suffers loss $\langle X_t, \ell_t \rangle$.



Given: action set $\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots\} \subseteq \{0, 1\}^d$. (set of all paths) For $t = 1, \ldots, T$, The learner chooses $X_t \in \mathcal{X}$ (choose a path).

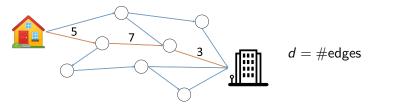
- The environment reveals ℓ_{ti} for which $X_{ti} = 1$.
- The learner suffers loss $\langle X_t, \ell_t \rangle$.



Given: action set $\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots\} \subseteq \{0, 1\}^d$. (set of all paths) For $t = 1, \ldots, T$,

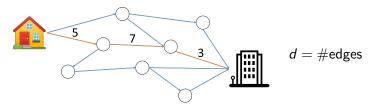
- The learner chooses $X_t \in \mathcal{X}$ (choose a path).
- The environment reveals l_{ti} for which X_{ti} = 1. (reveal the cost on each chosen edge)

• The learner suffers loss
$$\langle X_t, \ell_t \rangle$$
.



Given: action set $\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots\} \subseteq \{0, 1\}^d$. (set of all paths) For $t = 1, \ldots, T$,

- The learner chooses $X_t \in \mathcal{X}$ (choose a path).
- ► The environment reveals ℓ_{ti} for which X_{ti} = 1. (reveal the cost on each chosen edge)
- The learner suffers loss $\langle X_t, \ell_t \rangle$. (suffer the path cost)



Semi-bandits Regret Bounds

Goal: Minimize

$$\operatorname{Regret} = \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \langle X_t, \ell_t \rangle\right]}_{\operatorname{Learner's total cost}} - \underbrace{\min_{X \in \mathcal{X}} \mathbb{E}\left[\sum_{t=1}^{T} \langle X, \ell_t \rangle\right]}_{\operatorname{Best fixed action's total cost}}$$

- When ℓ_t are i.i.d.: Regret = $\Theta(\log T)$
- When ℓ_t are adversarially generated: Regret = $\Theta\left(\sqrt{T}\right)$

Our algorithm: always has $O(\sqrt{T})$, but gets $O(\log T)$ when the losses happen to be i.i.d.

MAB is special case of SB with $\mathcal{X} = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$.

Algorithm	Idea

MAB is special case of SB with $\mathcal{X} = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$.

Algorithm	Idea
SAO [BS12] SAPO [AC16]	i.i.d. algorithm + non-i.i.d. detection
SAPU [ACI0]	

MAB is special case of SB with $\mathcal{X} = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$.

Algorithm	Idea
SAO [BS12]	i i d algorithm I non i i d detection
SAPO [AC16]	i.i.d. algorithm + non-i.i.d. detection
EXP3++	adversarial algorithm (EXP3)
[SS14, SL17]	+ sophisticated exploration mechanism

MAB is special case of SB with $\mathcal{X} = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$.

Algorithm	Idea
SAO [BS12]	i i d algorithm I non i i d detection
SAPO [AC16]	i.i.d. algorithm + non-i.i.d. detection
EXP3++	adversarial algorithm (EXP3)
[SS14, SL17]	+ sophisticated exploration mechanism
BROAD [WL18]	adversarial algorithm (FTRL with special regularizer)
T-INF [ZS19]	+ improved analysis
(optimal)	

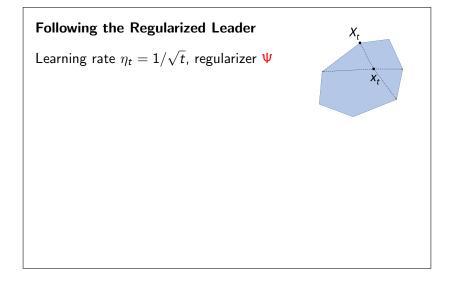
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

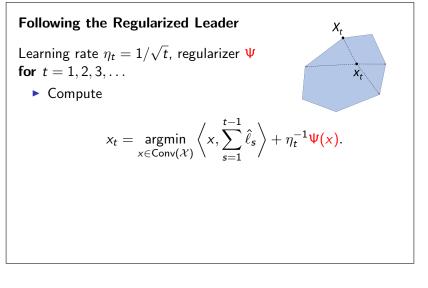
MAB is special case of SB with $\mathcal{X} = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$.

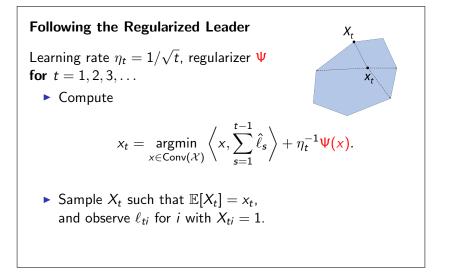
Algorithm	Idea
SAO [BS12]	iid algorithm I non iid detection
SAPO [AC16]	i.i.d. algorithm + non-i.i.d. detection
EXP3++	adversarial algorithm (EXP3)
[SS14, SL17]	+ sophisticated exploration mechanism
BROAD [WL18]	adversarial algorithm (FTRL with special regularizer)
T-INF [ZS19]	+ improved analysis
(optimal)	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

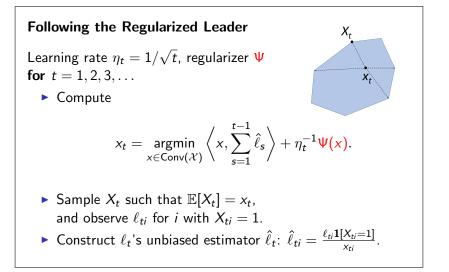
Our work is a generalization of $\left[WL18\right]$ and $\left[ZS19\right]'s$ idea to semi-bandits.







◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



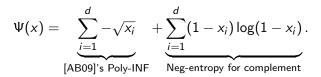
Regularizer (Key Contribution)

Two-sided hybrid regularizer:

$$\Psi(x) = \underbrace{\sum_{i=1}^{d} - \sqrt{x_i}}_{[\mathsf{AB09}]'\mathsf{s} \ \mathsf{Poly-INF}} + \underbrace{\sum_{i=1}^{d} (1 - x_i) \log(1 - x_i)}_{\mathsf{Neg-entropy \ for \ complement}}.$$

Regularizer (Key Contribution)

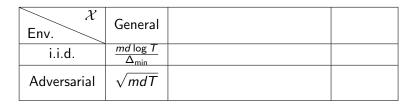
Two-sided hybrid regularizer:



Intuition:

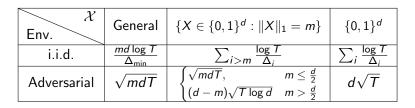
- when x_i is close to 0, the learner starves for information
 - \Rightarrow like a bandit problem
 - \Rightarrow using the optimal regularizer for bandit (Poly-INF)
- when x_i is close to 1
 - \Rightarrow like a full-info problem
 - \Rightarrow using the optimal regularizer for full-info (Neg-entropy)

Results Overview



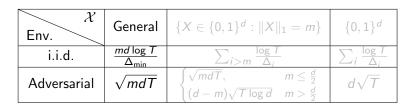
$$\begin{split} m &\triangleq \max_{X \in \mathcal{X}} \|X\|_{1}. \\ \Delta_{\min} &= \mathbb{E}[\text{second-best action's loss}] - \mathbb{E}[\text{best action's loss}] \\ & (\text{minimal optimality gap}) \end{split}$$

Results Overview



$$\begin{split} m &\triangleq \max_{X \in \mathcal{X}} \|X\|_{1}. \\ \Delta_{\min} &= \mathbb{E}[\text{second-best action's loss}] - \mathbb{E}[\text{best action's loss}] \\ & (\text{minimal optimality gap}) \end{split}$$

Results Overview



$$\begin{split} m &\triangleq \max_{X \in \mathcal{X}} \|X\|_{1}. \\ \Delta_{\min} &= \mathbb{E}[\text{second-best action's loss}] - \mathbb{E}[\text{best action's loss}] \\ & (\text{minimal optimality gap}) \end{split}$$

Analysis Steps

- 1. Analyze FTRL for the new regularizer and get $O(\sqrt{T})$ for the adversarial setting.
- 2. Further use self-bounding technique to get $O(\log T)$ for the i.i.d. setting.

Analyzing FTRL for the New Regularizer

Key lemma.

$$\mathsf{Reg} \leq \sum_{t=1}^T rac{1}{\sqrt{t}} \sum_i \min\left\{\sqrt{x_{ti}}, \quad (1-x_{ti})\left(1+\lograc{1}{1-x_{ti}}
ight)
ight\}.$$

Remarks.

1. The analysis is mostly standard, but needs more care (don't drop some terms as did in usual analysis).

- The two-sided-ness of the regularizer is the key to get "min{·, ·}".
- 3. From this bound, we get $O(\sqrt{T})$ bound easily.

$$\operatorname{Reg} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \underbrace{\sum_{i} \min\left\{\sqrt{x_{ti}}, \quad (1 - x_{ti})\left(1 + \log\frac{1}{1 - x_{ti}}\right)\right\}}_{\text{Goal: upper bound this by } C\sqrt{\Pr[X_t \neq X^*]}}$$

Intuitively true: $\Pr[X_t \neq X^*] \rightarrow 0$ $\Rightarrow x_t \rightarrow X^*$ \Rightarrow the above expression $\rightarrow 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\operatorname{\mathsf{Reg}} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \underbrace{\sum_{i} \min\left\{\sqrt{x_{ti}}, \quad (1 - x_{ti})\left(1 + \log\frac{1}{1 - x_{ti}}\right)\right\}}_{\text{Goal: upper bound this by } C\sqrt{\Pr[X_t \neq X^*]}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Assume it is proved...

$$\operatorname{\mathsf{Reg}} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \underbrace{\sum_{i} \min\left\{\sqrt{x_{ti}}, \quad (1 - x_{ti})\left(1 + \log\frac{1}{1 - x_{ti}}\right)\right\}}_{\text{Goal: upper bound this by } C\sqrt{\Pr[X_t \neq X^*]}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Assume it is proved...

$$\sum_t \Delta_{\min} \Pr[X_t \neq X^*] \leq \mathsf{Reg}$$

$$\operatorname{\mathsf{Reg}} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \underbrace{\sum_{i} \min\left\{\sqrt{x_{ti}}, \quad (1 - x_{ti})\left(1 + \log\frac{1}{1 - x_{ti}}\right)\right\}}_{\operatorname{\textbf{Goal: upper bound this by } C\sqrt{\Pr[X_t \neq X^*]}}$$

Assume it is proved...

$$\sum_{t} \Delta_{\min} \Pr[X_t \neq X^*] \leq \operatorname{Reg} \leq \sum_{t} \frac{C\sqrt{\Pr[X_t \neq X^*]}}{\sqrt{t}}$$
$$\leq \sum_{t} \frac{C^2}{2t\Delta_{\min}} + \sum_{t} \frac{\Delta_{\min} \Pr[X_t \neq X^*]}{2}$$
(AM-GM)

$$\operatorname{\mathsf{Reg}} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \underbrace{\sum_{i} \min\left\{\sqrt{x_{ti}}, \quad (1 - x_{ti})\left(1 + \log\frac{1}{1 - x_{ti}}\right)\right\}}_{\text{Goal: upper bound this by } C\sqrt{\Pr[X_t \neq X^*]}}$$

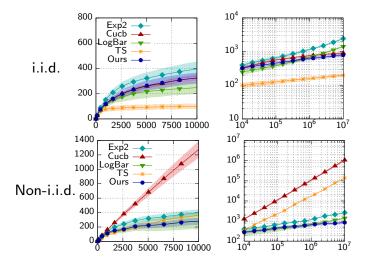
Assume it is proved...

$$\sum_{t} \Delta_{\min} \Pr[X_t \neq X^*] \leq \operatorname{Reg} \leq \sum_{t} \frac{C\sqrt{\Pr[X_t \neq X^*]}}{\sqrt{t}}$$
$$\leq \sum_{t} \frac{C^2}{2t\Delta_{\min}} + \sum_{t} \frac{\Delta_{\min} \Pr[X_t \neq X^*]}{2}$$
(AM-GM)

Thus,
$$\sum_{t} \Delta_{\min} \Pr[X_t \neq X^*] \leq \sum_{t=1}^{T} \frac{C^2}{t\Delta_{\min}} = \frac{C^2 \log T}{\Delta_{\min}}$$

 $\implies \operatorname{Reg} \leq \frac{C^2 \log T}{\Delta_{\min}}.$

Experiments (regret vs. time)



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Summary

- This paper considers semi-bandits, and proposes the first single algorithm that has optimal regret guarantees both in adversarial and i.i.d. environments.
- ► The algorithm is a simple instantiation of the Follow the Regularized Leader framework. The keys to get O(logT) bound in the i.i.d. setting are to
 - $1. \ \text{use the two-sided hybrid regularizer}$
 - 2. analyze it using the self-bounding technique
- Experiments show our algorithm indeed has best-of-both-world performance, while previous algorithms do not.

