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● Learning agent sequentially pulls K arms in n rounds

● The agent pulls arm It in round t ∈ [n] and observes its reward
● Reward of arm i is in [0, 1] and drawn i.i.d. from a distribution with mean μi
● Goal: Maximize the expected n-round reward
● Challenge: Exploration-exploitation trade-off

Stochastic Multi-Armed Bandit

…
Arm 1 Arm 2 Arm K



Thompson Sampling (Thompson, 1933)

● Sample μi,t from posterior distribution Pi,t and pull arm It = argmaxi μi,t
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Thompson Sampling (Thompson, 1933)

● Sample μi,t from posterior distribution Pi,t and pull arm It = argmaxi μi,t

● Key properties
○ Pi,t concentrates at μi with the number of pulls
○ μi,t overestimates μi with a sufficient probability

Bernoulli bandit
Pi,t = beta 

Gaussian bandit
Pi,t = normal

Neural network
Pi,t = ???
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General Randomized Exploration

● Sample μi,t from posterior distribution Pi,t and pull arm It = argmaxi μi,t

● Key properties
○ Pi,t concentrates at (scaled and shifted) μi with the number of pulls
○ μi,t overestimates (scaled and shifted) μi with a sufficient probability

How do we design 
distribution Pi,t?
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● μi,t is the mean of a non-parametric bootstrap sample of the history of arm i 
with pseudo-rewards (garbage)
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● μi,t is the mean of a non-parametric bootstrap sample of the history of arm i 
with pseudo-rewards (garbage)

● Benefits and challenges of randomized garbage
○ μi,t overestimates scaled and shifted μi with a sufficient probability
○ Bias in the estimate of μi

Giro (Garbage In, Reward Out) with [0, 1] Rewards

History Garbage Bootstrap sample

Arm 1

Arm 2

μi,t

0 0

1 10

0 0 1 1

0 0

1 1

0

1

1 1 1 1 0 0

0 0

1 1 01 1 1

0

2 / 3

5 / 9



Contextual Giro with [0, 1] Rewards

● Straightforward generalization to complex structured problems
● μi,t is the estimated reward of arm i in a model trained on a non-parametric 

bootstrap sample of the history with pseudo-rewards (garbage)

● Giro is as general as the ε-greedy policy... but no tuning!
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See you at poster #125!

How to do bandits with 
neural networks easily?

How does Giro compare to 
Thompson sampling?


