Stay With Me: Lifetime Maximization Through Heteroscedastic Linear Bandits With Reneging

Ping-Chun Hsieh¹, Xi Liu¹, Anirban Bhattacharya², and P. R. Kumar¹

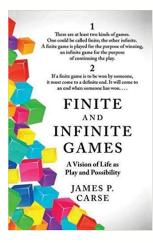
¹Department of ECE Texas A&M University

² Department of Statistics Texas A&M University

ICML 2019

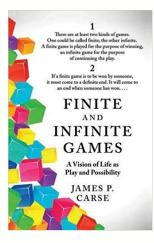
Poster @ Pacific Ballroom # 124

Lifetime Maximization: Continuing The Play



- A finite game is played for the purpose of winning.
- An infinite game is for the purpose of continuing the play.

Lifetime Maximization: Continuing The Play

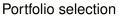


- A finite game is played for the purpose of winning.
- An infinite game is for the purpose of continuing the play.

Lifetime maximization

Why Lifetime Maximization?

Medical treatments

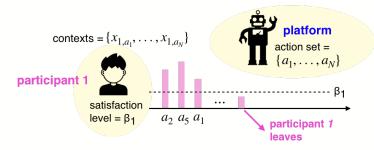


Cloud services

Salient features of these applications:

- 1 Each participant has a satisfaction level.
- 2 A participant drops if the outcomes are not satisfactory.
- On the outcomes depend heavily on the contextual information of the participant.

Model: Linear Bandits With Reneging



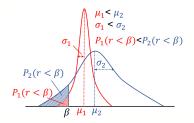
- ${x_{t,a}}_{a \in A}$ are pairwise participant-action contexts (observed by the platform when participant *t* arrives).
- 2 Outcome $r_{t,a}$ is conditionally independent given the context and has mean $\theta_*^T x_{t,a}$.
- **3** Participant *t* keeps interacting with the platform as long as $r_{t,a} \ge \beta_t$. Otherwise, the participant drops.

Heteroscedastic Outcomes

Heteroscedasticity: Outcome variations can be wildly different across different participants and actions

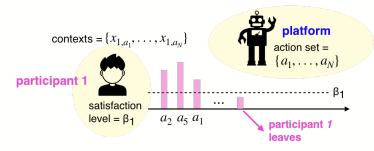
Heteroscedastic Outcomes

- Heteroscedasticity: Outcome variations can be wildly different across different participants and actions
- Example:
 - Two actions, 1 (red) and 2 (blue)
 - Participant satisfaction level = β



• Heteroscedasticity is widely studied in econometrics, and is usually captured through regression on variance.

Model: Heteroscedastic Bandits With Reneging



- $\{x_{t,a}\}_{a \in A}$ are pairwise participant-action contexts (observed by the platform when participant *t* arrives)
- Outcome *r*_{t,a} is conditionally independent given the context and satisfies that *r*_{t,a} ~ N(θ^T_{*} x_{t,a}, f(φ^T_{*} x_{t,a})).
- **③** Participant *t* keeps interacting with the platform if $r_{t,a} \ge \beta_t$. Otherwise, the participant drops.

Oracle Policy and Regret

- Oracle policy π^{oracle} already knows θ_* and ϕ_* .
- For each participant *t*, π^{oracle} keeps choosing the action that minimizes reneging probability ℙ{*r*_{t,a} < β_t|*x*_{t,a}}
 - Hence, π^{oracle} is a fixed policy

Oracle Policy and Regret

- Oracle policy π^{oracle} already knows θ_* and ϕ_* .
- For each participant *t*, π^{oracle} keeps choosing the action that minimizes reneging probability ℙ{*r*_{t,a} < β_t|*x*_{t,a}}
 - Hence, π^{oracle} is a fixed policy
- For T participants, define

Regret^{π}(*T*) = (the total expected lifetime under π^{oracle}) - (the total expected lifetime under π)

When participant *t* arrives, obtain estimators θ, φ with confidence intervals C_θ, C_φ based on past observations.

- When participant *t* arrives, obtain estimators θ, φ with confidence intervals C_θ, C_φ based on past observations.
- For each action a, construct a UCB index as

$$Q_{t}^{\mathsf{HR}}(x_{t,a}) = \underbrace{\left[\Phi\left(\frac{\beta_{t} - \widehat{\theta}^{\top} x_{t,a}}{\sqrt{f(\widehat{\phi}^{\top} x_{t,a})}}\right)\right]^{-1}}_{\text{estimated expected lifetime}} + \underbrace{\Delta(C_{\theta}, C_{\phi}, x_{t,a})}_{\text{confidence interval for lifetime}}$$
(1)

- When participant *t* arrives, obtain estimators θ, φ with confidence intervals C_θ, C_φ based on past observations.
- For each action a, construct a UCB index as

$$Q_{t}^{\mathsf{HR}}(x_{t,a}) = \underbrace{\left[\Phi\left(\frac{\beta_{t} - \widehat{\theta}^{\top} x_{t,a}}{\sqrt{f(\widehat{\phi}^{\top} x_{t,a})}}\right)\right]^{-1}}_{\text{estimated expected lifetime}} + \underbrace{\Delta(C_{\theta}, C_{\phi}, x_{t,a})}_{\text{confidence interval for lifetime}}$$
(1)

• Apply the action $\arg \max_a Q_t^{HR}(x_{t,a})$.

- When participant *t* arrives, obtain estimators θ, φ with confidence intervals C_θ, C_φ based on past observations.
- For each action a, construct a UCB index as

$$Q_{t}^{\mathsf{HR}}(x_{t,a}) = \underbrace{\left[\Phi\left(\frac{\beta_{t} - \widehat{\theta}^{\top} x_{t,a}}{\sqrt{f(\widehat{\phi}^{\top} x_{t,a})}}\right)\right]^{-1}}_{\text{estimated expected lifetime}} + \underbrace{\Delta(C_{\theta}, C_{\phi}, x_{t,a})}_{\text{confidence interval for lifetime}}$$
(1)

• Apply the action $\arg \max_a Q_t^{HR}(x_{t,a})$.

Main technical challenges

- **1** Design estimators $\hat{\theta}, \hat{\phi}$ under heteroscedasticity
- 2 Derive the confidence intervals $C_{ heta}, C_{\phi}$ for $\widehat{ heta}, \widehat{\phi}$
- **3** Convert the C_{θ} , C_{ϕ} into the confidence interval of lifetime

Estimators of θ_* and ϕ_* (Challenge 1)

• Generalized least square estimator (Wooldridge, 2015): With any *n* outcome observations,

$$\widehat{\theta}_n = \left(\boldsymbol{X}_n^\top \boldsymbol{X}_n + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}_n^\top \boldsymbol{r}, \widehat{\phi}_n = \left(\boldsymbol{X}_n^\top \boldsymbol{X}_n + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}_n^\top \boldsymbol{f}^{-1} (\widehat{\boldsymbol{\varepsilon}} \circ \widehat{\boldsymbol{\varepsilon}}).$$

- X_n is the matrix of n applied contexts
- r is the vector of n observed outcomes
- $\widehat{\varepsilon}(x_{t,a}) = r_{t,a} \widehat{\theta}_n^\top x_{t,a}$ is the estimated residual with respect to $\widehat{\theta}_n$

Estimators of θ_* and ϕ_* (Challenge 1)

• Generalized least square estimator (Wooldridge, 2015): With any *n* outcome observations,

$$\widehat{\theta}_n = \left(\boldsymbol{X}_n^\top \boldsymbol{X}_n + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}_n^\top \boldsymbol{r}, \widehat{\phi}_n = \left(\boldsymbol{X}_n^\top \boldsymbol{X}_n + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}_n^\top \boldsymbol{f}^{-1} (\widehat{\boldsymbol{\varepsilon}} \circ \widehat{\boldsymbol{\varepsilon}}).$$

- X_n is the matrix of n applied contexts
- r is the vector of n observed outcomes
- $\widehat{\varepsilon}(x_{t,a}) = r_{t,a} \widehat{\theta}_n^\top x_{t,a}$ is the estimated residual with respect to $\widehat{\theta}_n$
- Nice property (Abbasi-Yadkori et al., 2011): Let V_n = X_n^TX_n + λI.
 For any δ > 0, with probability at least 1 − δ, for all n ∈ N,

$$||\widehat{\theta}_n - \theta_*||_{\boldsymbol{V}_n} \leq C_{\theta}(\delta, n) = \mathcal{O}(\log(\frac{1}{\delta}) + \log n).$$

Main Technical Contributions (Challenges 2 & 3)

Theorem

For any $\delta > 0$, with probability at least $1 - 2\delta$, we have

$$|\widehat{\phi}_n - \phi_*||_{\boldsymbol{V}_n} \leq C_{\phi}(\delta, n) = \mathcal{O}\Big(\log(\frac{1}{\delta}) + \log n\Big), \quad \forall n \in \mathbb{N}.$$
 (2)

• The proof is more involved since $\widehat{\phi}_n$ depends on the residual $\widehat{\varepsilon}$

Main Technical Contributions (Challenges 2 & 3)

Theorem

For any $\delta > 0$, with probability at least $1 - 2\delta$, we have

$$|\widehat{\phi}_n - \phi_*||_{\boldsymbol{V}_n} \leq C_{\phi}(\delta, n) = \mathcal{O}\Big(\log(\frac{1}{\delta}) + \log n\Big), \ \forall n \in \mathbb{N}.$$
 (2)

• The proof is more involved since $\widehat{\phi}_n$ depends on the residual $\widehat{\varepsilon}$

Theorem

 $\Delta(C_{\theta}(n,\delta), C_{\phi}(n,\delta), x) := (k_1 C_{\theta}(n,\delta) + k_2 C_{\phi}(n,\delta)) \cdot ||x||_{V_n^{-1}} \text{ is a confidence interval with respect to lifetime, where } k_1, k_2 \text{ are constants independent of past history and } x.$

Main Technical Contributions (Challenges 2 & 3)

Theorem

For any $\delta > 0$, with probability at least $1 - 2\delta$, we have

$$|\widehat{\phi}_n - \phi_*||_{\boldsymbol{V}_n} \leq C_{\phi}(\delta, n) = \mathcal{O}\Big(\log(\frac{1}{\delta}) + \log n\Big), \ \forall n \in \mathbb{N}.$$
 (2)

• The proof is more involved since $\widehat{\phi}_n$ depends on the residual $\widehat{\varepsilon}$

Theorem

 $\Delta(C_{\theta}(n,\delta), C_{\phi}(n,\delta), x) := (k_1 C_{\theta}(n,\delta) + k_2 C_{\phi}(n,\delta)) \cdot ||x||_{V_n^{-1}} \text{ is a confidence interval with respect to lifetime, where } k_1, k_2 \text{ are constants independent of past history and } x.$

Theorem

Under the HR-UCB policy, Regret(T) = $\mathcal{O}(\sqrt{T(\log T)^3})$.