Correlated bandits or: How to minimize mean-squared error online

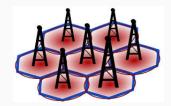
V. Praneeth Boda¹ and Prashanth L. A.²

¹LinkedIn Corp. ²Indian Institute of Technology Madras.

A portion of this work was done while the authors were at University of Maryland, College Park

Centrality among Bandits

 Placement of sensors used for measuring temperature in a region.



 Best set of towers which approximate the whole network.

Aim: Find arm with highest information about other arms

Minimum Mean Squared Error Estimation

► Jointly Gaussian arms $X_{\mathcal{M}} = (X_1, ..., X_K)$, with zero mean and covariance matrix $\Sigma \triangleq \mathbb{E}[X_{\mathcal{M}}^T X_{\mathcal{M}}]$.

$$\mathcal{E}_{i} \triangleq \min_{g} \mathbb{E}\left[\left(X_{\mathcal{M}} - g(X_{i})\right)^{T} \left(X_{\mathcal{M}} - g(X_{i})\right)\right]$$

$$= \sum_{j=1}^{K} \mathbb{E}\left[\left(X_{j} - \mathbb{E}[X_{j}|X_{i}]\right)^{2}\right] = \sum_{j \neq i} \sigma_{j}^{2}(1 - \rho_{ij}^{2})$$

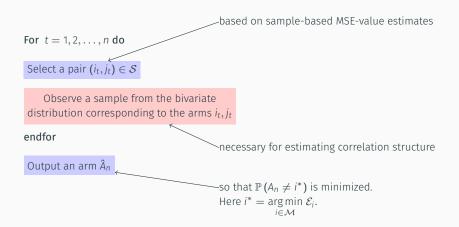
The optimal

$$g^*(X_i) = \mathbb{E}[X_{\mathcal{M}}|X_i] = [\mathbb{E}[X_1|X_i] \dots \mathbb{E}[X_K|X_i]]^T$$

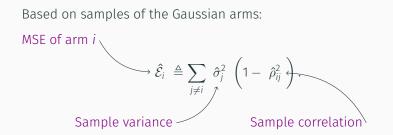
with $\mathbb{E}[X_j|X_i] = \frac{\mathbb{E}[X_jX_i]}{\mathbb{E}[X_i^2]}X_i = \frac{\rho_{ij}\sigma_j}{\sigma_i}X_i.$

Correlated Bandits

Input: set of arm-pairs $S \triangleq \{(i, j) \mid i, j = 1, ..., K, i < j\}$, number of rounds n



MSE Estimation and Concentration



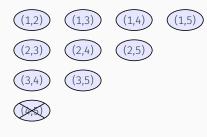
MSE Concentration: Assume $\sigma_i^2 \le 1, i = 1, ..., K$. Then, for any i = 1, ..., K, and for any $\epsilon \in [0, 2K]$, we have

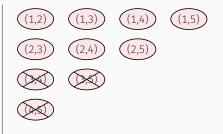
$$\mathbb{P}\left(\left|\hat{\mathcal{E}}_{i}-\mathcal{E}_{i}\right|>\epsilon\right)\leq 14K\exp\left(-\frac{nl^{2}\epsilon^{2}}{cK^{5}}\right),$$

where c is a universal constant, and $0 < l = \min_{i} \sigma_{i}^{2}$.

SR algorithm: Illustration of arm-pair elimination

Maintain active arms and arm-pairs

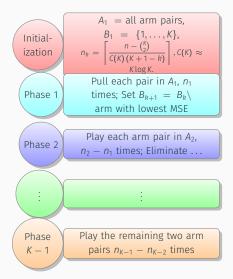




Active arm-pairs after arms 4, 5 are eliminated

Active arm-pairs after arms 3, 4, 5 are eliminated

Successive Rejects: An algorithm to find the best arm



- One arm pair played n₁ times, ..., another two played n₂ times
- $k \text{ arms played } n_{k+1} \text{ times}$
- $\sum_{k=1}^{N-1} (k-1)n_k + (K-1)n_{K-1} < n,$
- ▶ *n_k* increases with *k*

Thanks. Questions?