
Improved Dynamic Graph 
Learning through Fault-Tolerant 

Sparsification
Chun Jiang Zhu, Sabine Storandt, Kam-Yiu Lam, Song Han, Jinbo Bi



Motivations

• Consider the problem of solving certain graph regularized learning 
problems
• For example, suppose vector β* is a smooth signal over vertices in a graph G, 

and y is the corresponding observations

• Solve 

• Solution can be obtained in Õ (m) time by an optimal SDD 
matrix solver



Motivations

• Solving systems in Laplacians matrices can be performed 
approximately more efficiently if a sparse approximation H to the 
Laplacian is maintained

which can be obtained in Õ (n) time

• How about when the graph changes?



Motivations

• We introduce the notion of fault-tolerant sparsifiers, that 
is sparsifiers that stay sparsifiers even after the removal of vertices / 
edges

• Specifically, we
•Prove that these sparsifiers exist

•Show how to compute them efficiently in nearly linear time

•Improve upon previous work on dynamically maintaining sparsifiers in 
certain regimes



Fault-Tolerant Sparsifiers



Example



Main Theorems



Main Techniques for FT spectral sparsifiers

• Use FT spanners and random sampling for constructing FT sparsifiers

• Inspired by the sparsification algorithm (Koutis & Xu, 2016)

• (1) First constructs an (f + t)-FT spanner for the input graph G by 
any FT graph spanner algorithms

• (2) Then uniformly samples each non-spanner edge with a fixed 
probability 1/4, and multiplies the edge weight of each sampled edge 
by 4, to preserve the edge’s expectation

Koutis, I. and Xu, S. Simple parallel and distributed algorithms for spectral graph sparsification. ACM Transactions on Parallel Computing, 3(2):14, 2016.



Main Techniques for FT spectral sparsifiers

• The (f + t)-FT spanner guarantees that even in the presence of 
at most f faults, each edge not in the spanner has t edge-disjoint 
paths between its endpoints in the spanner, showing its small 
effective resistance in G

• By the matrix concentration bounds

(Harvey, 2012), we can prove that the

resulting subgraph is a sparse FT

spectral sparsifier

Harvey, N. Matrix concentration and sparsification. In Workshop on Randomized 
Numerical Linear Algebra: Theory and Practise, 2012.



Using FT sparsifiers in subsequent learning 
tasks
• At a time point t > 0,

•For each vertex v (edge e) insertion into Gt−1, if v (e) is in H, add v and its associated 
edges in H (e itself) to Ht−1

•For each vertex v (edge e) deletion from Gt−1, if v (e) is in Ht−1, remove v and its 
associated edges (e) from Ht−1

• These only incur a constant computational cost per edge update

• More importantly, the resulting subgraph is guaranteed to be a spectral 
sparsifier of the graph Gt at the time point t, under the assumption that Gt

differs from G0 by a bounded amount

• We give stability bounds to quantify the impact of the FT sparsification
on the accuracy of subsequent graph learning tasks



FT Cut Sparsifiers

• There exists graph-based learning based on graph cuts and using cut-
based algorithms, instead of spectral methods

•Min-Cut for SSL (Blum & Chawla,2001), Max-Cut for SSL (Wang et 
al., 2013), Sparsest-Cut for hierarchical learning (Moses & Vaggos, 2017) 
and Max-Flow for SSL (Rustamov & Klosowski, 2018)

• Construction:
•The same framework as that for FT spectral sparsifiers

•Define and use a variant of maximum spanning trees, called FT α-MST, to 
preserve edge connectivities

Blum, A. and Chawla, S. Learning from labeled and unlabeled data using graph mincuts. In Proceedings of ICML Conference, pp. 19–26, 2001.
Wang, J., Jebara, T., and Chang, S.-F. Semi-supervised learning using greedy max-cut. Journal of Machine Learning Research, 14:771–800, 2013.
Moses, C. and Vaggos, C. Approximate hierarchical clustering via sparsest cut and spreading metrics. In Proceedings of SODA Conference, pp. 841–854, 2017.
Rustamov, R. and Klosowski, J. Interpretable graph-based semi-supervised learning via flows. In Proceedings of AAAI Conference, pp. 3976–3983, 2018.



Experiments

• Dataset: Facebook social network data with 4309 vertices and 88234 
edges from the SNAP

• Method: Compared our algorithm FTSPA with a baseline SPA, which 
constructs a spectral sparsifier from scratch at every time point, and 
the exact method EXACT

• The speedup is over 105, while the accuracies are not significantly 
affected by the FT sparsification!



Accuracy of Laplacian-regularized estimation (σ
is the SD of Gaussian noises added to y)


