Improved Dynamic Graph Learning through Fault-Tolerant Sparsification

Chun Jiang Zhu, Sabine Storandt, Kam-Yiu Lam, Song Han, Jinbo Bi

Motivations

- Consider the problem of solving certain graph regularized learning problems
 - For example, suppose vector β^* is a smooth signal over vertices in a graph G, and y is the corresponding observations

• Solve
$$\min_{\beta \in R^n} ||y - \beta||^2 + \lambda \beta L_G \beta^T$$

• Solution $\hat{\beta} = (I + \lambda L_G)^{-1} y$ can be obtained in $\tilde{\mathbf{O}}(m)$ time by an optimal SDD matrix solver

Motivations

 Solving systems in Laplacians matrices can be performed approximately more efficiently if a sparse approximation H to the Laplacian is maintained

$$\min_{\beta \in R^n} ||y - \beta||^2 + \lambda' \beta L_H \beta^T$$
$$\tilde{\beta} = (I + \lambda' L_H)^{-1}$$

which can be obtained in $\mathbf{\tilde{O}}(n)$ time

• How about when the graph changes?

Motivations

- We introduce the notion of fault-tolerant sparsifiers, that is sparsifiers that stay sparsifiers even after the removal of vertices / edges
- Specifically, we

•Prove that these sparsifiers exist

•Show how to compute them efficiently in nearly linear time

•Improve upon previous work on dynamically maintaining sparsifiers in certain regimes

Fault-Tolerant Sparsifiers

Definition 1. For a graph G(V, E), a positive integer f and parameter $\epsilon \in (0, 1)$, a re-weighted subgraph $H(V, E' \subseteq E)$ is an f-VFT (f-EFT) $(1 \pm \epsilon)$ -spectral sparsifier, if for all vertex (edge) sets $F \subseteq V$ ($F \subseteq E$) of size $|F| \leq f$, $(1 - \epsilon)L_{G-F} \preceq L_{H-F} \preceq (1 + \epsilon)L_{G-F}$ holds.

Definition 3. For a graph G(V, E), a positive integer f and parameter $\epsilon \in (0, 1)$, a re-weighted subgraph $H(V, E' \subseteq E)$ is an f-VFT (f-EFT) $(1 \pm \epsilon)$ -cut sparsifier if, for all vertex (edge) sets $F \subseteq V$ ($F \subseteq E$) of size $|F| \leq f$, $(1 - \epsilon)L_{G-F} \preceq^{\{0,1\}} L_{H-F} \preceq^{\{0,1\}} (1 + \epsilon)L_{G-F}$ holds.

Example

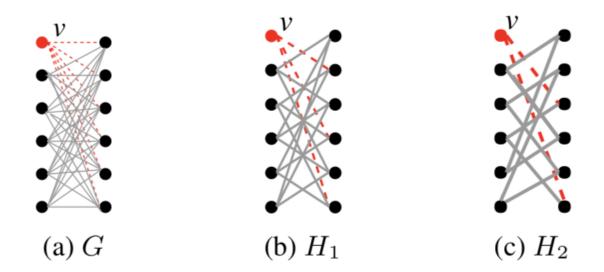


Figure 1: 1-FT cut sparsifiers of G: H_1 and H_2 . (a) G with 36 edges and edge weight 1. (b) H_1 with 18 edges and edge weight 2. (c) H_2 with 12 edges and edge weight 3. Without loss of generality consider that v is faulty. The *Min-Cut* of $G - \{v\}$ is 5, while the *Min-Cut* of $H_1 - \{v\}$ and $H_2 - \{v\}$ are 4 and 3, respectively. Then H_1 and H_2 are 1-FT (1 ± 0.2) -cut sparsifier and (1 ± 0.4) -cut sparsifier of G, respectively.

Main Theorems

Theorem 1. For an *n*-vertex *m*-edge graph *G*, a positive integer *f*, a parameter $\epsilon \in (0, 1)$ and $\rho > 1$, an *f*-VFT (*f*-EFT) $(1 \pm \epsilon)$ -spectral sparsifier for *G* of expected size $O(fn \log \rho + n \log^2 n \log^3 \rho / \epsilon^2 + m / \rho)$ w.h.p. can be constructed.

Theorem 7. For an *n*-vertex *m*-edge graph *G*, a positive integer *f*, a parameter $\epsilon \in (0, 1)$, $\rho > 1$ a constant $C_{\epsilon} > 0$ and a parameter c > 1, Algorithm 4 constructs an *f*-*VFT* (*f*-*EFT*) $(1 \pm \epsilon)$ -cut sparsifier for *G* of expected size $O(fn \log \rho + n \log^2 n \log^3 \rho / \epsilon^2 + m / \rho)$, with probability at least $1 - n^{-c}$.

Main Techniques for FT spectral sparsifiers

- Use FT spanners and random sampling for constructing FT sparsifiers
- Inspired by the sparsification algorithm (Koutis & Xu, 2016)
- (1) First constructs an (f + t)-*FT* spanner for the input graph G by any *FT* graph spanner algorithms
- (2) Then uniformly samples each non-spanner edge with a fixed probability 1/4, and multiplies the edge weight of each sampled edge by 4, to preserve the edge's expectation

Main Techniques for FT spectral sparsifiers

- The (f + t)-*FT* spanner guarantees that even in the presence of at most f faults, each edge not in the spanner has t edge-disjoint paths between its endpoints in the spanner, showing its small effective resistance in G
- By the matrix concentration bounds (*Harvey, 2012*), we can prove that the resulting subgraph is a sparse *FT* spectral sparsifier

Harvey, N. Matrix concentration and sparsification. In *Workshop on Randomized Numerical Linear Algebra: Theory and Practise*, 2012.

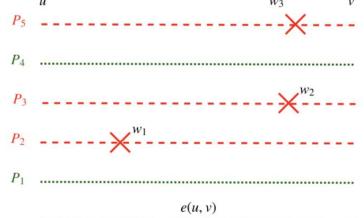


Figure 2: A faulty vertex set $F = \{w_1, \dots, w_{\hat{f}}\}$ of size \hat{f} can invalidate at most \hat{f} paths out of f vertex-disjoint paths between endpoints u and v of an edge e(u, v). Here f = 5 and $\hat{f} = 3$.

Using FT sparsifiers in subsequent learning tasks

• At a time point t > 0,

•For each vertex v (edge e) insertion into G_{t-1} , if v (e) is in H, add v and its associated edges in H (e itself) to H_{t-1}

•For each vertex v (edge e) deletion from G_{t-1} , if v (e) is in H_{t-1} , remove v and its associated edges (e) from H_{t-1}

- These only incur a **constant** computational cost per edge update
- More importantly, the resulting subgraph is guaranteed to be a spectral sparsifier of the graph G_t at the time point t, under the assumption that G_t differs from G₀ by a bounded amount
- We give stability bounds to quantify the impact of the *FT* sparsification on the accuracy of subsequent graph learning tasks

FT Cut Sparsifiers

• There exists graph-based learning based on graph cuts and using cutbased algorithms, instead of spectral methods

•Min-Cut for SSL (Blum & Chawla,2001), Max-Cut for SSL (Wang et al., 2013), Sparsest-Cut for hierarchical learning (Moses & Vaggos, 2017) and Max-Flow for SSL (Rustamov & Klosowski, 2018)

- Construction:
 - •The same framework as that for FT spectral sparsifiers

•Define and use a variant of maximum spanning trees, called FT α -MST, to preserve edge connectivities

Blum, A. and Chawla, S. Learning from labeled and unlabeled data using graph mincuts. In *Proceedings of ICML Conference*, pp. 19–26, 2001. Wang, J., Jebara, T., and Chang, S.-F. Semi-supervised learning using greedy max-cut. *Journal of Machine Learning Research*, 14:771–800, 2013. Moses, C. and Vaggos, C. Approximate hierarchical clustering via sparsest cut and spreading metrics. In *Proceedings of SODA Conference*, pp. 841–854, 2017. Rustamov, R. and Klosowski, J. Interpretable graph-based semi-supervised learning via flows. In *Proceedings of AAAI Conference*, pp. 3976–3983, 2018.

Experiments

- Dataset: Facebook social network data with 4309 vertices and 88234 edges from the SNAP
- Method: Compared our algorithm *FTSPA* with a baseline *SPA*, which constructs a spectral sparsifier from scratch at every time point, and the exact method *EXACT*
- The speedup is over 10⁵, while the accuracies are not significantly affected by the FT sparsification!

Methods	Update Time	Speedup	# Edges
SPA	34.2 s	1	12978 ± 30
FTSPA	0.3 ms	$> 10^{5}$	16502 ± 41

Table 1: Update time and # edges of SPA and FTSPA

Accuracy of Laplacian-regularized estimation (σ is the SD of Gaussian noises added to y)

