Learning Optimal Linear Regularizers

Matthew Streeter

Google

Setup

- Want to produce a model θ
- Will minimize training loss + regularizer: $L_{train}(\theta) + R(\theta)$
- Ultimately, we care about test loss: $L_{test}(\theta)$

Setup

- Want to produce a model θ
- Will minimize training loss + regularizer: $L_{train}(\theta) + R(\theta)$
- Ultimately, we care about test loss: $L_{test}(\theta)$
- An optimal regularizer: $R(\theta) = L_{test}(\theta) L_{train}(\theta)$

• suggests that a good regularizer should upper bound the generalization gap

• Want to find regularizer R that minimizes $L_{test}(\theta_R)$

• Want to find regularizer R that minimizes $L_{test}(\theta_R)$

• Want to find regularizer R that minimizes $L_{test}(\theta_R)$

 $L_{test}(\theta_{R}) = \max_{\theta \in \Theta} \left\{ slack(\theta) - suboptimality(\theta) \right\} - slack(\theta_{R}) + const$

• Want to find regularizer R that minimizes $L_{test}(\theta_R)$

 $L_{test}(\theta_{R}) = \max_{\theta \in \Theta} \{ slack(\theta) - suboptimality(\theta) \} - slack(\theta_{R}) + const$

Approximate by maximizing over small set of models (estimating test loss using validation set)

• Linear regularizer: $R(\theta) = \lambda * feature_vector(\theta)$

- Linear regularizer: $R(\theta) = \lambda * feature_vector(\theta)$
- LearnReg: given models with known training & validation loss, finds

best λ (in terms of approximation on previous slide)

- Linear regularizer: $R(\theta) = \lambda * feature_vector(\theta)$
- LearnReg: given models with known training & validation loss, finds

best λ (in terms of approximation on previous slide)

Solves a sequence of linear programs

- Linear regularizer: $R(\theta) = \lambda * feature_vector(\theta)$
- LearnReg: given models with known training & validation loss, finds

best λ (in terms of approximation on previous slide)

Solves a sequence of linear programs

b Under certain assumptions, can "jump" to optimal λ given data from just 1 + $|\lambda|$ models

- Linear regularizer: $R(\theta) = \lambda * feature_vector(\theta)$
- LearnReg: given models with known training & validation loss, finds

best λ (in terms of approximation on previous slide)

Solves a sequence of linear programs

- **b** Under certain assumptions, can "jump" to optimal λ given data from just 1 + $|\lambda|$ models
- **TuneReg:** uses LearnReg iteratively to do hyperparameter tuning

