Optimal Transport for structured data with application on graphs

Titouan Vayer
Joint work with Laetitia Chapel, Remi Flamary, Romain Tavenard and Nicolas Courty

A novel distance between labeled graphs based on optimal transport

Contributions:

- Differentiable distance between labeled graphs. Jointly considers the features and the structures

Contributions:

- Differentiable distance between labeled graphs. Jointly considers the features and the structures

Optimal transport: soft assignment between the nodes

Distance $=1.41$

Contributions:

- Differentiable distance between labeled graphs. Jointly considers the features and the structures

Computing average of labeled graphs

Structured data as probability distribution

Structured data as probability distribution

Features $\left(a_{i}\right)_{i} \bullet a_{i}$

Structured data as probability distribution

Features $\left(a_{i}\right)_{i} \bullet \bullet a_{i}$

Structured data as probability distribution

weighted by their masses $\left(h_{i}\right)_{i}$

Optimal transport in a nutshell

Compare two probability distributions by transporting one onto another

Optimal transport in a nutshell

Compare two probability distributions by transporting one onto another

Wasserstein distance
Gromov-Wasserstein distance

Optimal transport in a nutshell

Compare two probability distributions by transporting one onto another

Wasserstein distance
Gromov-Wasserstein distance

Fused Gromov-Wasserstein distance

where $\boldsymbol{\pi}$ is the soft assignment matrix α is a trade-off features/structures

Fused Gromov-Wasserstein distance

Properties

- Interpolate between Wasserstein distance on features and Gromov-Wasserstein distance on the structures
- Distance on labeled graph: vanishes iff graphs have same labels and weights at the same place up to a permutation

Optimization problem

- Non convex Quadratic Program: hard!
- Conditional Gradient Descent (aka Frank Wolfe)

Suitable for entropic regularization + Sinkhorn iteraterations

Applications

Classification

					LABELED GRAPHS		VOCIAL GRAPHS		VECTOR ATTRIBUTES GRAPH	
DATASET	MUTAG	PTC	NCI1	IMDB-B	SYNTHETIC	PROTEIN	CUNEIFORM			
WL	86.21 ± 8.15	62.17 ± 7.80	85.13 ± 1.61	UNAPPLICABLE(U)	U	U				
GK	82.42 ± 8.40	56.46 ± 8.03	60.78 ± 2.48	56.00 ± 3.61	41.13 ± 4.68	U				
RW	79.47 ± 8.17	55.09 ± 7.34	58.63 ± 2.44	U	U	U				
SP	85.79 ± 2.51	58.53 ± 2.55	73.00 ± 0.51	55.80 ± 2.93	38.93 ± 5.12	U	U			
HOPPER	U	U	U	U	90.67 ± 4.67	71.96 ± 3.22	32.59 ± 8.73			
PROPA	U	U	U	U	64.67 ± 6.70	61.34 ± 4.38	12.59 ± 6.67			
PSCN $k=10$	83.47 ± 10.26	58.34 ± 7.71	70.65 ± 2.58	U	$\mathbf{1 0 0 . 0 0} \pm \mathbf{0 . 0 0}$	67.95 ± 11.28	25.19 ± 7.73			
FGW	$\mathbf{8 8 . 4 2} \pm \mathbf{5 . 6 7}$	$\mathbf{6 5 . 3 1} \pm \mathbf{7 . 9 0}$	$\mathbf{8 6 . 4 2} \pm \mathbf{1 . 6 3}$	$\mathbf{6 3 . 8 0} \pm \mathbf{3 . 4 9}$	$\mathbf{1 0 0 . 0 0} \pm \mathbf{0 . 0 0}$	$\mathbf{7 4 . 5 5} \pm \mathbf{2 . 7 4}$	$\mathbf{7 6 . 6 7} \pm \mathbf{7 . 0 4}$			

Graph Barycenter + k-means clustering of graphs
Noiseless graph Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Bary $n=15$ Bary $n=7$

Check out our poster at Pacific Ballroom \#133!!

