

Optimal Transport for structured data with application on graphs

Titouan Vayer

Joint work with Laetitia Chapel, Remi Flamary, Romain Tavenard and Nicolas Courty

A novel distance between labeled graphs based on optimal transport

Contributions:

Differentiable distance between labeled graphs.
Jointly considers the features and the structures

Contributions:

• Differentiable distance between labeled graphs. Jointly considers the features and the structures

Optimal transport: soft assignment between the nodes

Contributions:

• Differentiable distance between labeled graphs. Jointly considers the features and the structures

Computing **average** of labeled graphs

space of the graph

weighted by their masses $(h_i)_i$

Optimal transport in a nutshell

Compare two probability distributions by transporting one onto another

Wasserstein distance

Gromov-Wasserstein distance

Optimal transport in a nutshell

Compare two probability distributions by transporting one onto another

Wasserstein distance

Gromov-Wasserstein distance

Optimal transport in a nutshell

Compare two probability distributions by transporting one onto another

Wasserstein distance

Gromov-Wasserstein distance

Fused Gromov-Wasserstein distance

$$FGW_{q,\alpha}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \sum_{i,j,k,l} ((1-\alpha)d(a_i,b_j)^q + \alpha |C_1(i,k) - C_2(j,l)|^q) \pi_{i,j}\pi_{k,l}$$

where π is the soft assignment matrix α is a trade-off features/structures

Fused Gromov-Wasserstein distance

Properties

- · Interpolate between Wasserstein distance on features and Gromov-Wasserstein distance on the structures
- Distance on labeled graph: vanishes iff graphs have same labels and weights at the same place up to a permutation

Optimization problem

- Non convex Quadratic Program: hard !
- Conditional Gradient Descent (aka Frank Wolfe)
- Suitable for entropic regularization + Sinkhorn iteraterations

Applications

	LABELED GRAPHS			Social Graphs	Vector attributes Graph		
DATASET	MUTAG	PTC	NCI1	IMDB-B	SYNTHETIC	PROTEIN	CUNEIFORM
WL	86.21 ± 8.15	62.17 ± 7.80	$85.13{\pm}1.61$	UNAPPLICABLE(U)	U	U	U
GK	$82.42 {\pm} 8.40$	$56.46 {\pm} 8.03$	$60.78 {\pm} 2.48$	56.00 ± 3.61	$41.13 {\pm} 4.68$	U	U
RW	$79.47 {\pm} 8.17$	55.09 ± 7.34	$58.63 {\pm} 2.44$	U	U	U	U
\mathbf{SP}	$85.79 {\pm} 2.51$	58.53 ± 2.55	$73.00{\pm}0.51$	$55.80{\pm}2.93$	$38.93{\pm}5.12$	U	U
HOPPER	U	U	U	U	$90.67 {\pm} 4.67$	$71.96 {\pm} 3.22$	$32.59 {\pm} 8.73$
PROPA	U	U	U	U	$64.67 {\pm} 6.70$	$61.34{\pm}4.38$	$12.59 \pm \ 6.67$
PSCN $k = 10$	$83.47{\pm}10.26$	$58.34{\pm}7.71$	$70.65{\pm}2.58$	U	$100.00{\pm}0.00$	$67.95{\pm}11.28$	$25.19{\pm}7.73$
FGW	$\textbf{88.42}{\pm}\textbf{5.67}$	$65.31{\pm}7.90$	$\textbf{86.42{\pm}1.63}$	$\textbf{63.80}{\pm\textbf{3.49}}$	$100.00{\pm}0.00$	$74.55{\pm}2.74$	$\textbf{76.67}{\pm\textbf{7.04}}$

Classification

Graph Barycenter + k-means clustering of graphs

Check out our poster at Pacific Ballroom #133!!