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A novel distance between labeled graphs  
based on optimal transport 
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Optimal transport in a nutshell 

Wasserstein distance
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Fused Gromov-Wasserstein distance

FGWq,α(μ, ν) = min
π∈Π(μ,ν) ∑

i, j,k,l

( (1 − α)d(ai, bj)q + α |C1(i, k) − C2( j, l) |q )πi, jπk,l

where     is the soft assignment matrixπ
α is a trade-off features/structures



Fused Gromov-Wasserstein distance

Properties
• Interpolate between Wasserstein distance on features and Gromov-Wasserstein distance on the structures 

• Distance on labeled graph: vanishes iff graphs have same labels and weights at the same place up to a permutation 

Optimization problem
• Non convex Quadratic Program: hard !


• Conditional Gradient Descent (aka Frank Wolfe)


• Suitable for entropic regularization + Sinkhorn iteraterations



Applications

Noiseless graph Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Bary n=15 Bary n=7

Classification

Graph Barycenter + k-means clustering of graphs



Check out our poster at Pacific Ballroom #133!!


