Automatic Classifiers as Scientific Instruments: One Step Further Away from Ground-Truth

Jacob Whitehill and Anand Ramakrishnan Worcester Polytechnic Institute (WPI), Massachusetts, USA

Machine learning to advance basic science

- Machine perception can advance basic science in:
 - Psychology
 - Education
 - Medicine
- ...by providing automatic classifiers as new scientific instruments, e.g.:
 - Automatic stress detectors from wrist monitors instead of questionnaires.
 - Facial action unit detectors from video instead of electromyography.
 - Student engagement detectors from video instead of observational protocols.

Empatica E4 EDA

Emotient/iMotions

Kaur et al. 2018

Correlation study

- Suppose a researcher wishes to measure the relationship between two constructs *U* and *V*, e.g.:
 - *U* = stress
 - V = academic performance.
- Standard methodology:
 - Use a standard measurement tool (e.g., survey, observational protocol) to estimate the values of *U* and *V* from a sample of *n* participants.
 - This produces two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, which we can assume w.l.o.g. have 0-mean and 1-length.
 - Estimate the correlation between U and V as:

$$r = \rho(\mathbf{u}, \mathbf{v}) = \mathbf{u}^{\mathsf{T}} \mathbf{v} = \cos \angle (\mathbf{u}, \mathbf{v})$$

Only the angle between the two vectors determines their correlation.

Correlation study

- But what if the researcher instead uses an **automatic stress detector** *d* whose correlation with ground-truth measurements is *q* (known from prior validation)?
- Instead of \mathbf{u} , the researcher obtains a vector $\hat{\mathbf{u}}$.
- What kind of spurious deductions about the correlation between U and V could result?

Trivariate correlation

- Suppose \mathbf{u} and \mathbf{v} are ground-truth values of U and V.
 - The correlation between \mathbf{u} and \mathbf{v} is $r = \cos(105^\circ) = -.259$.

Trivariate correlation

- Using a detector d, the researcher might obtain $\hat{\mathbf{u}}$, whose correlation with \mathbf{u} is q.
 - The correlation between $\hat{\mathbf{u}}$ and \mathbf{v} is $\cos(135^\circ) = -.707$ much larger than, but same sign as, the ground-truth correlation.

Trivariate correlation

- But they might also obtain vector $\hat{\mathbf{u}}'$, whose correlation with \mathbf{u} is also q.
 - The correlation between $\hat{\mathbf{u}}'$ and \mathbf{v} is $\cos(75^\circ) = +.259$ this is the **opposite sign** as the ground-truth correlation.

We call this a false correlation.

1.The set of all vectors whose correlation with \mathbf{u} is q, is an (n-3)-sphere $\mathcal{T}^n \in \mathbb{R}^n$.

- 1.The set of all vectors whose correlation with \mathbf{u} is q, is an (n-3)-sphere $\mathcal{T}^n \in \mathbb{R}^n$.
- 2.If the correlation between \mathbf{u} and \mathbf{v} is r, then the expected sample correlation between $\hat{\mathbf{u}}$ and \mathbf{v} , where $\hat{\mathbf{u}}$ is drawn uniformly at random from \mathcal{T}^n , is qr.

- 1.The set of all vectors whose correlation with ${\bf u}$ is q, is an (n-3)-sphere ${\mathcal T}^n\in{\mathbb R}^n$.
- 2.If the correlation between \mathbf{u} and \mathbf{v} is r, then the expected sample correlation between $\hat{\mathbf{u}}$ and \mathbf{v} , where $\hat{\mathbf{u}}$ is drawn uniformly at random from \mathcal{T}^n , is qr.
- 3.We derive a formula h(n,q,r) for the probability of a false correlation.

- 1.The set of all vectors whose correlation with ${\bf u}$ is q, is an (n-3)-sphere ${\mathcal T}^n\in{\mathbb R}^n$.
- 2.If the correlation between \mathbf{u} and \mathbf{v} is r, then the expected sample correlation between $\hat{\mathbf{u}}$ and \mathbf{v} , where $\hat{\mathbf{u}}$ is drawn uniformly at random from \mathcal{T}^n , is qr.
- 3.We derive a formula h(n,q,r) for the probability of a false correlation.
- 4. We show that h is monotonically decreasing in q and n. But it can still be non-negligible for values of n, q used in recent affective computing studies despite a small p-value.

Case study: Student engagement vs. cognitive task performance

U: Engagement

) Engagement = 1 (b) 1

(c) Engagement = 3 (d) Engagement = 4

V: Cognitive task performance

- Whitehill et al. 2014 measured student engagement using (1) observational protocol and (2) automatic engagement detector d (q=0.50).
- Using hand-coded labels, corr(U, V) was estimated as r=0.37.
- Given *n*, *q*, *r*, what is probability of false correlation from *d*?

Case study: Student engagement vs. cognitive task performance

U: Engagement

(a) Engagement = 1

(b) Engagement = 2

(d) Engagement = 4

(c) Engagement = 3

- Whitehill et al. 2014 measured student engagement using (1) observational protocol and (2) automatic engagement detector d (q=0.50).
- Using hand-coded labels, corr(U, V) was estimated as r=0.37.
- Given n, q, r, what is probability of false correlation from d?

