# Traditional and Heavy-Tailed Self Regularization in Neural Network Models

#### Charles H. Martin & Michael W. Mahoney

#### ICML, June 2019

(charles@calculationconsulting.com & mmahoney@stat.berkeley.edu)

Martin and Mahoney

Traditional and Heavy-Tailed Self Reg.

June 2019 1 / 11

• = • •

## Motivations: towards a Theory of Deep Learning

Theoretical: deeper insight into Why Deep Learning Works?

- convex versus non-convex optimization?
- explicit/implicit regularization?
- is / why is / when is deep better?
- VC theory versus Statistical Mechanics theory?

• . . .

Practical: use insights to improve engineering of DNNs?

- when is a network fully optimized?
- can we use labels and/or domain knowledge more efficiently?
- large batch versus small batch in optimization?
- designing better ensembles?

```
• . . .
```

・ 回 ト ・ ヨ ト ・ ヨ ト

## How we will study regularization

The Energy Landscape is *determined* by layer weight matrices  $W_L$ :

$$E_{DNN} = h_L(\mathbf{W}_L \times h_{L-1}(\mathbf{W}_{L-1} \times h_{L-2}(\cdots) + \mathbf{b}_{L-1}) + \mathbf{b}_L)$$

Traditional regularization is applied to  $\mathbf{W}_L$ :

$$\min_{W_l, b_l} \mathcal{L}\left(\sum_i E_{DNN}(d_i) - y_i\right) + \alpha \sum_l \|\mathbf{W}_l\|$$

Different types of regularization, e.g., different norms  $\|\cdot\|$ , leave different empirical signatures on  $\mathbf{W}_L$ .

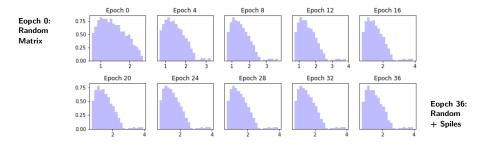
What we do:

- Turn off "all" regularization.
- Systematically turn it back on, explicitly with  $\alpha$  or implicitly with knobs/switches.
- Study empirical properties of  $\mathbf{W}_L$ .

< □ > < □ > < □ > < □ > < □ > < □ >

# ESD: detailed insight into $W_L$

#### Empirical Spectral Density (ESD: eigenvalues of $X = \mathbf{W}_L^T \mathbf{W}_L$ )



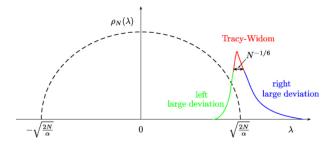
Entropy decrease corresponds to:

- modification (later, breakdown) of random structure and
- onset of a new kind of self-regularization.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Random Matrix Theory 101: Wigner and Tracy-Widom

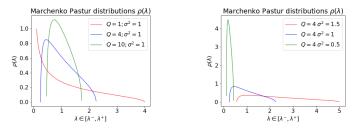
- Wigner: global bulk statistics approach universal semi-circular form
- Tracy-Widom: local edge statistics fluctuate in universal way



Problems with Wigner and Tracy-Widom:

- Weight matrices usually not square
- Typically do only a single training run

# Random Matrix Theory 102': Marchenko-Pastur



(a) Vary aspect ratios



< <p>Image: A transformed and transformed and

Figure: Marchenko-Pastur (MP) distributions.

Important points:

- Global bulk stats: The overall shape is deterministic, fixed by Q and  $\sigma$ .
- Local edge stats: The edge  $\lambda^+$  is very crisp, i.e.,  $\Delta \lambda_M = |\lambda_{max} - \lambda^+| \sim O(M^{-2/3})$ , plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.

#### Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:

• model strongly-correlated systems ("signal") with heavy-tailed random matrices.

|                           | Generative Model                                  | Finite-N                             | Limiting                             | Bulk edge                   | (far) Tail                      |
|---------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|---------------------------------|
|                           | w/ elements from                                  | Global shape                         | Global shape                         | Local stats                 | Local stats                     |
|                           | Universality class                                | $\rho_N(\lambda)$                    | $\rho(\lambda), N \to \infty$        | $\lambda \approx \lambda^+$ | $\lambda \approx \lambda_{max}$ |
| Basic MP                  | Gaussian                                          | MP<br>distribution                   | MP                                   | TW                          | No tail.                        |
| Spiked-<br>Covariance     | Gaussian,<br>+ low-rank<br>perturbations          | MP +<br>Gaussian<br>spikes           | MP                                   | τw                          | Gaussian                        |
| Heavy tail, $4 < \mu$     | (Weakly)<br>Heavy-Tailed                          | MP +<br>PL tail                      | MP                                   | Heavy-Tailed*               | Heavy-Tailed*                   |
| Heavy tail, $2 < \mu < 4$ | (Moderately)<br>Heavy-Tailed<br>(or "fat tailed") | $\sim \lambda^{-(a\mu+b)}$           | $\sim \lambda^{-(\frac{1}{2}\mu+1)}$ | No edge.                    | Frechet                         |
| Heavy tail, $0 < \mu < 2$ | (Very)<br>Heavy-Tailed                            | $\sim \lambda^{-(\frac{1}{2}\mu+1)}$ | $\sim \lambda^{-(\frac{1}{2}\mu+1)}$ | No edge.                    | Frechet                         |

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured relations between them. Boxes marked "\*" are best described as following "TW with large finite size corrections" that are likely Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked "\*" are phenomenological fits, describing large ( $2 < \mu < 4$ ) or small ( $0 < \mu < 2$ ) finite-size corrections on  $N \rightarrow \infty$  behavior.

## Phenomenological Theory: 5+1 Phases of Training

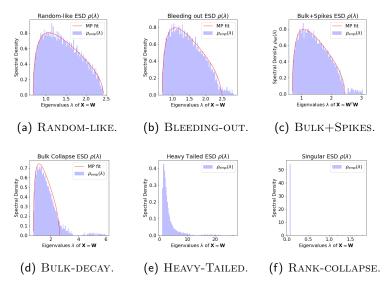


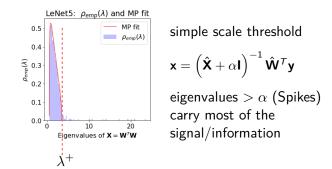
Figure: The 5+1 phases of learning we identified in DNN training.

Martin and Mahoney

Traditional and Heavy-Tailed Self Reg.

June 2019 8 / 11

## Old/Small Models: Bulk+Spike $\sim$ Tikhonov regularization



Smaller, older models like LeNet5 exhibit traditional regularization

June 2019 9 / 11

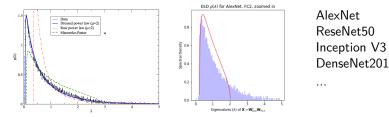
New/Large Models: Heavy-tailed Self-regularization

W is *strongly-correlated* and highly non-random

• Can model strongly-correlated systems by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc.)



Larger, modern DNNs exhibit novel Heavy-tailed self-regularization

## Uses, implications, and extensions

- Exhibit all phases of training by varying just the batch size ("explaining" the generalization gap)
- A Very Simple Deep Learning (VSDL) model (with load-like parameters α, & temperature-like parameters τ) that exhibits a non-trivial phase diagram
- Connections with minimizing frustration, energy landscape theory, and the spin glass of minimal frustration
- A "rugged convexity" since local minima do *not* concentrate near the ground state of heavy-tailed spin glasses
- A novel capacity control metric (the weighted sum of power law exponents) to predict trends in generalization performance for state-of-the-art models

Use our tool:

• "pip install weightwatcher"

Stop by the poster for more details ...