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Motivations: towards a Theory of Deep Learning
Theoretical: deeper insight into Why Deep Learning Works?

convex versus non-convex optimization?

explicit/implicit regularization?

is / why is / when is deep better?

VC theory versus Statistical Mechanics theory?

. . .

Practical: use insights to improve engineering of DNNs?
when is a network fully optimized?

can we use labels and/or domain knowledge more efficiently?

large batch versus small batch in optimization?

designing better ensembles?

. . .
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How we will study regularization
The Energy Landscape is determined by layer weight matrices WL:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Traditional regularization is applied to WL:

min
Wl ,bl

L
(∑

i
EDNN(di )− yi

)
+ α

∑
l
‖Wl‖

Different types of regularization, e.g., different norms ‖ · ‖, leave different
empirical signatures on WL.

What we do:
Turn off “all” regularization.
Systematically turn it back on, explicitly with α or implicitly with
knobs/switches.
Study empirical properties of WL.
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ESD: detailed insight into WL

Empirical Spectral Density (ESD: eigenvalues of X = WT
L WL)

Eopch 0:
Random
Matrix

Eopch 36:
Random
+ Spiles

Entropy decrease corresponds to:
modification (later, breakdown) of random structure and
onset of a new kind of self-regularization.
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102’: Marchenko-Pastur

(a) Vary aspect ratios (b) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.

Important points:

Global bulk stats: The overall shape is deterministic, fixed by Q and σ.

Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:
model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12 µ+1)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



Phenomenological Theory: 5+1 Phases of Training

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
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Old/Small Models: Bulk+Spike ∼ Tikhonov regularization

λ+

simple scale threshold

x =
(

X̂ + αI
)−1

ŴT y

eigenvalues > α (Spikes)
carry most of the
signal/information

Smaller, older models like LeNet5 exhibit traditional regularization
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New/Large Models: Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random

Can model strongly-correlated systems by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc.)

AlexNet
ReseNet50
Inception V3
DenseNet201
...

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Uses, implications, and extensions

Exhibit all phases of training by varying just the batch size (“explaining” the
generalization gap)

A Very Simple Deep Learning (VSDL) model (with load-like parameters α,
& temperature-like parameters τ) that exhibits a non-trivial phase diagram

Connections with minimizing frustration, energy landscape theory, and the
spin glass of minimal frustration

A “rugged convexity” since local minima do not concentrate near the ground
state of heavy-tailed spin glasses

A novel capacity control metric (the weighted sum of power law exponents)
to predict trends in generalization performance for state-of-the-art models

Use our tool:

“pip install weightwatcher”

Stop by the poster for more details ...

Martin and Mahoney Traditional and Heavy-Tailed Self Reg. June 2019 11 / 11


