Characterizing Well-Behaved vs. Pathological Deep Neural Networks

Antoine Labatie (ICML 2019)

Context

There is still no **mature theory** able to validate the **full choice of hyperparameters** leading to state-of-the-art performance in deep neural networks.

A large branch of research aimed at building this theory has focused on networks at the time of **random initialization**. The justification is twofold:

- 1. Due to the randomness of model parameters at initialization, networks at that time may serve as a proxy for the full hypothesis space
- 2. The initialization has an importance in itself as the starting point of the optimization

Our contributions:

- 1. We introduce a **unifying methodology** to characterize neural networks at initialization
- 2. We apply this methodology to characterize neural networks with the most commonly used hyperparameters

Methodology — Propagation

Simultaneous propagation of:

- The **signal**
- An additive noise corrupting the signal

Vanilla Nets:

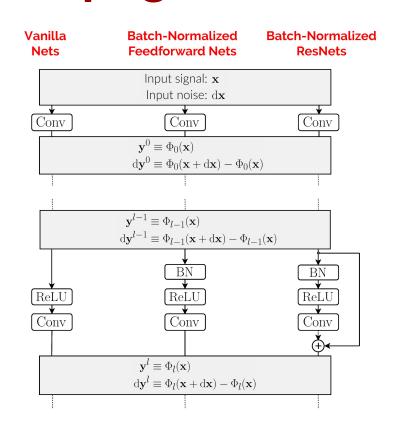
convolution + ReLU

Batch-Normalized Feedforward Nets:

convolution + batch norm + ReLU

Batch-Normalized ResNets:

convolution + batch norm + ReLU + skip connection



Methodology — Data Randomness

Effective Rank:

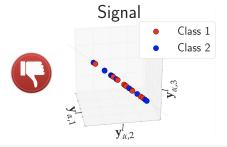
$$r_{\mathrm{eff}}(\mathbf{y}^l) \equiv rac{\mathrm{Tr} \, oldsymbol{C}_{\mathbf{x}, lpha} ig[\mathbf{y}_{lpha,:}^l ig]}{||oldsymbol{C}_{\mathbf{x}, lpha} ig[\mathbf{y}_{lpha,:}^l ig]||} = rac{\sum_i \lambda_i}{\max_i \lambda_i} \geq 1.$$

Normalized Sensitivity:

$$\chi^l \equiv \left(rac{\mathrm{SNR}^0}{\mathrm{SNR}^l}
ight)^{rac{1}{2}}, \ \ ext{with } \mathrm{SNR}^l \equiv rac{\mathrm{Tr} \, oldsymbol{C}_{\mathbf{x}, lpha} ig[\mathbf{y}_{lpha,:}^l ig]}{\mathrm{Tr} \, oldsymbol{C}_{\mathbf{x}, \mathrm{d}\mathbf{x}, lpha} ig[\mathrm{d}\mathbf{y}_{lpha,:}^l ig]}.$$

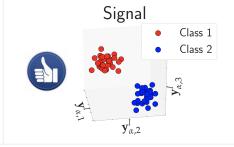
Pathology of One-Dimensional Signal:

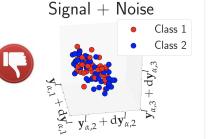
$$r_{\rm eff}(\mathbf{y}^l) \xrightarrow{l \to \infty} 1.$$



Pathology of Exploding Sensitivity:

$$\chi^l \ge \exp(\gamma l) \xrightarrow{l \to \infty} \infty$$
, for some $\gamma > 0$.





Methodology — Model Parameters Randomness

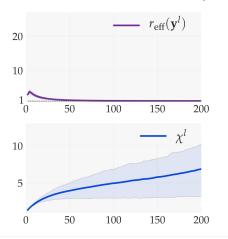
Finally, we introduce the randomness from **model parameters** at **initialization**.

The key of our methodology consists in treating the effective rank and the normalized sensitivity as **random variables** which depend on these **model parameters.**

Applying the Methodology

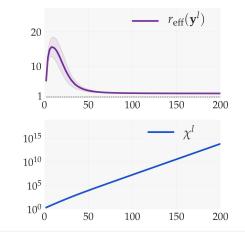
Vanilla Nets

- Pathology of one-dimensional signal
- Limited growth of the normalized sensitivity



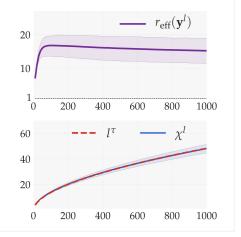
Batch-Normalized Feedforward Nets

- Few directions of signal variance preserved
- Pathology of exploding sensitivity



Batch-Normalized ResNets

- Many directions of signal variance preserved
- Power-law growth of the normalized sensitivity



Takeaway

There are two opposing forces at work:

- 1. The **additivity** of convolutions (i.e. affine transforms) with respect to width, which repels from pathologies
- 2. The **multiplicativity** of layer composition with respect to depth, which attracts to pathologies

Feedforward nets are pathological at high depth since they are subject both to additivity and multiplicativity.

Batch-normalized resnets are well-behaved at all depths since they are subject to additivity but relieved from multiplicativity.

Characterizing Well-Behaved vs. Pathological Deep Neural Networks

Pacific Ballroom #98

Code: https://github.com/alabatie/moments-dnns