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The implicit bias of stochastic gradient descent

I Compared with gradient descent (GD), stochastic gradient
descent (SGD) tends to generalize better.

I This is attributed to the noise in SGD.

I In this work we study the anisotropic structure of SGD
noise and its importance for escaping and regularization.



Stochastic gradient descent and its variants

Loss function L(θ) := 1
N

∑N
i=1 `(xi ; θ).

Gradient Langevin dynamic (GLD)
θt+1 = θt − η∇θL(θt) + ηεt , εt ∼ N

(
0, σ2

t I
)
.

Stochastic gradient descent (SGD)
θt+1 = θt − ηg̃(θt), g̃(θt) = 1

m

∑
x∈Bt
∇θ`(x ; θt).

The structure of SGD noise
g̃(θt) ∼ N

(
∇L(θt),Σ

sgd(θt)
)
, Σsgd(θt) ≈

1
m

[
1
N

∑N
i=1∇`(xi ; θt)∇`(xi ; θt)T −∇L(θt)∇L(θt)

T
]
.

SGD reformulation
θt+1 = θt − η∇L(θt) + ηεt , εt ∼ N

(
0,Σsgd(θt)

)
.



GD with unbiased noise

θt+1 = θt − η∇θL(θt) + εt , εt ∼ N (0,Σt) . (1)

Iteration (1) could be viewed as a discretization of the following
continuous stochastic differential equation (SDE):

dθt = −∇θL(θt) dt +
√

Σt dWt . (2)

Next we study the role of noise structure Σt by analyzing the
continous SDE (2).



Escaping efficiency

Definition (Escaping efficiency)

Suppose the SDE (2) is initialized at minimum θ0, then for a fixed
time t small enough, the escaping efficiency is defined as the
increase of loss potential:

Eθt [L(θt)− L(θ0)] (3)

Under suitable approximations, we could compute the escaping
efficiency for SDE (2),

E[L(θt)− L(θ0)] = −
∫ t

0
E
[
∇LT∇L

]
+

∫ t

0

1

2
ETr(HtΣt) dt (4)

≈ 1

4
Tr

((
I − e−2Ht

)
Σ

)
≈ t

2
Tr (HΣ) . (5)

Thus Tr (HΣ)serves as an important indicator for measuring the
escaping behavior of noises with different structures.



Factors affecting the escaping behavior

The noise scale For Gaussian noise εt ∼ N (0,Σt), we can measure
its scale by ‖εt‖trace := E[εTt εt ] = · · · = Tr(Σt). Thus
based on Tr(HΣ), we see that the larger noise scale
is, the faster the escaping happens.
To eliminate the impact of noise scale, assume that

given time t,Tr(Σt) is constant. (6)

The ill-conditioning of minima For the minima with Hessian as
scalar matrix Ht = λI , the noises in same magnitude
make no difference since Tr(HtΣt) = λTrΣt .

The structure of noise For the ill-conditioned minima, the
structure of noise plays an important role on the
escaping!



The impact of noise structure
Proposition
Let HD×D and ΣD×D be semi-positive definite. If

1. H is ill-conditioned. Let λ1, λ2 . . . λD be the eigenvalues of H in
descent order, and for some constant k � D and d > 1

2 , the
eigenvalues satisfy

λ1 > 0, λk+1, λk+2, . . . , λD < λ1D
−d ; (7)

2. Σ is “aligned” with H. Let ui be the corresponding unit
eigenvector of eigenvalue λi , for some projection coefficient a > 0,
we have

uT1 Σu1 ≥ aλ1
TrΣ

TrH
. (8)

Then for such anisotropic Σ and its isotropic equivalence Σ̄ = TrΣ
D I under

constraint (6), we have the follow ratio describing their difference in term
of escaping efficiency,

Tr (HΣ)

Tr(HΣ̄)
= O

(
aD(2d−1)

)
, d >

1

2
. (9)



Analyze the noise of SGD via Proposition 1

By Proposition 1, The anisotropic noises satisfying the two
conditions indeed help escape from the ill-conditioned minima.
Thus to see the importance of SGD noise, we only need to show it
meets the two conditions.

I Condition 1 is naturally hold for neural networks, thanks to
their over-parameterization!

I See the following Proposition 2 for the second condition.



SGD noise and Hessian

Proposition
Consider a binary classification problem with data {(xi , yi )}i∈I , y ∈ {0, 1},
and mean square loss, L(θ) = E(x,y)

∥∥φ ◦ f (x ; θ)− y
∥∥2
, where f denotes

the network and φ is a threshold activation function,

φ(f ) = min{max{f , δ}, 1− δ}, (10)

δ is a small positive constant.
Suppose the network f satisfies:

1. it has one hidden layer and piece-wise linear activation;

2. the parameters of its output layer are fixed during training.

Then there is a constant a > 0, for θ close enough to minima θ∗,

u(θ)TΣ(θ)u(θ) ≥ aλ(θ)
TrΣ(θ)

TrH(θ)
(11)

holds almost everywhere, for λ(θ) and u(θ) being the maximal eigenvalue
and its corresponding eigenvector of Hessian H(θ).



Examples of different noise structures

Table: Compared dynamics defined in Eq. (1).

Dynamics Noise εt Remarks

SGD εt ∼ N
(

0,Σsgd
t

)
Σsgd

t is the gradient covariance matrix.

GLD
constant

εt ∼ N
(
0, %2

t I
)

%t is a tunable constant.

GLD dy-
namic

εt ∼ N
(
0, σ2

t I
)

σt is adjusted to force the noise share
the same magnitude with SGD noise,
similarly hereinafter.

GLD di-
agonal

εt ∼ N
(

0, diag(Σsgd
t )

)
diag(Σsgd

t ) is the diagonal of the covari-

ance of SGD noise Σsgd
t .

GLD
leading

εt ∼ N
(

0, σt Σ̃t

)
Σ̃t is the best low rank approximation

of Σsgd
t .

GLD
Hessian

εt ∼ N
(

0, σt H̃t

)
H̃t is the best low rank approximation
of the Hessian.

GLD 1st
eigven(H)

εt ∼ N
(

0, σtλ1u1uT1

)
λ1, u1 are the maximal eigenvalue and
its corresponding unit eigenvector of the
Hessian.



2-D toy example
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Figure: 2-D toy example. Compared dynamics are initialized at the sharp
minima. Left: The trajectory of each compared dynamics for escaping
from the sharp minimum in one run. Right: Success rate of arriving the
flat solution in 100 repeated runs



One hidden layer network
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Figure: One hidden layer neural networks. The solid and the dotted lines
represent the value of Tr(HΣ) and Tr(HΣ̄), respectively. The number of
hidden nodes varies in {32, 128, 512}.



FashionMNIST experiments
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Figure: FashionMNIST experiments. Left: The first 400 eigenvalues of
Hessian at θ∗GD , the sharp minima found by GD after 3000 iterations.

Middle: The projection coefficient estimation â =
uT

1 Σu1TrH
λ1TrΣ in

Proposition 1. Right: Tr(HtΣt) versus Tr(HtΣ̄t) during SGD
optimization initialized from θ∗GD , Σ̄t = TrΣt

D I denotes the isotropic
equivalence of SGD noise.



FashionMNIST experiments
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Figure: FashionMNIST experiments. Compared dynamics are initialized
at θ∗GD found by GD, marked by the vertical dashed line in iteration 3000.
Left: Test accuracy versus iteration. Right: Expected sharpness versus
iteration. Expected sharpness (the higher the sharper) is measured as
Eν∼N (0,δ2I )

[
L(θ + ν)

]
− L(θ), and δ = 0.01, the expectation is computed

by average on 1000 times sampling.



Conclusion

I We explore the escaping behavior of SGD-like processes
through analyzing their continuous approximation.

I We show that thanks to the anisotropic noise, SGD could
escape from sharp minima efficiently, which leads to implicit
regularization effects.

I Our work raises concerns over studying the structure of SGD
noise and its effect.

I Experiments support our understanding.
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