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The implicit bias of stochastic gradient descent

I Compared with gradient descent (GD), stochastic gradient
descent (SGD) tends to generalize better.

I This is attributed to the noise in SGD.

I In this work we study the anisotropic structure of SGD
noise and its importance for escaping and regularization.
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GD with unbiased noise

� t +1 = � t � � r � L(� t ) + � t ; � t � N (0; � t ) : (1)

Iteration (1) could be viewed as a discretization of the following
continuous stochastic di�erential equation (SDE):

d� t = �r � L(� t ) dt +
p

� t dWt : (2)

Next we study the role of noise structure �t by analyzing the
continous SDE (2).



Escaping e�ciency

De�nition (Escaping e�ciency)
Suppose the SDE (2) is initialized at minimum� 0, then for a �xed
time t small enough, theescaping e�ciencyis de�ned as the
increase of loss potential:

E� t [L(� t ) � L(� 0)] (3)

Under suitable approximations, we could compute the escaping
e�ciency for SDE (2),
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Thus Tr (H� )serves as an important indicator for measuring the
escaping behavior of noises with di�erent structures.



Factors a�ecting the escaping behavior

The noise scale For Gaussian noise� t � N (0; � t ), we can measure
its scale byk� t ktrace := E[� T

t � t ] = � � � = Tr(� t ). Thus
based on Tr(H�), we see that the larger noise scale
is, the faster the escaping happens.
To eliminate the impact of noise scale, assume that

given time t ; Tr( � t ) is constant: (6)

The ill-conditioning of minima For the minima with Hessian as
scalar matrixHt = � I , the noises in same magnitude
make no di�erence since Tr(Ht � t ) = � Tr� t .

The structure of noise For the ill-conditioned minima, the
structure of noise plays an important role on the
escaping!



The impact of noise structure
Proposition
Let HD� D and � D� D be semi-positive de�nite. If

1. H is ill-conditioned. Let � 1; � 2 : : : � D be the eigenvalues ofH in
descent order, and for some constantk � D and d > 1

2 , the
eigenvalues satisfy

� 1 > 0; � k+1 ; � k+2 ; : : : ; � D < � 1D � d ; (7)

2. � is \aligned" with H. Let ui be the corresponding unit
eigenvector of eigenvalue� i , for some projection coe�cienta > 0,
we have

uT
1 � u1 � a� 1
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: (8)

Then for such anisotropic� and its isotropic equivalence�� = Tr �
D I under

constraint (6), we have the follow ratio describing their di�erence in term
of escaping e�ciency,
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Analyze the noise of SGD via Proposition 1

By Proposition 1, The anisotropic noises satisfying the two
conditions indeed help escape from the ill-conditioned minima.
Thus to see the importance of SGD noise, we only need to show it
meets the two conditions.

I Condition 1 is naturally hold for neural networks, thanks to
their over-parameterization!

I See the following Proposition 2 for the second condition.



SGD noise and Hessian

Proposition
Consider a binary classi�cation problem with dataf (xi ; yi )gi 2 I ; y 2 f 0; 1g,
and mean square loss,L(� ) = E(x;y)




 � � f (x; � ) � y




 2

; wheref denotes
the network and� is a threshold activation function,

� (f ) = min f maxf f ; � g; 1 � � g; (10)

� is a small positive constant.
Suppose the networkf satis�es:

1. it has one hidden layer and piece-wise linear activation;

2. the parameters of its output layer are �xed during training.

Then there is a constanta > 0, for � close enough to minima� � ,

u(� )T �( � )u(� ) � a� (� )
Tr�( � )
TrH(� )

(11)

holds almost everywhere, for� (� ) and u(� ) being the maximal eigenvalue
and its corresponding eigenvector of HessianH(� ).



Examples of di�erent noise structures

Table: Compared dynamics de�ned in Eq. (1).

Dynamics Noise � t Remarks

SGD � t � N
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namic

� t � N
�
0; � 2

t I
�

� t is adjusted to force the noise share
the same magnitude with SGD noise,
similarly hereinafter.
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of the Hessian.
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1

�
� 1; u1 are the maximal eigenvalue and
its corresponding unit eigenvector of the
Hessian.



2-D toy example

Figure: 2-D toy example. Compared dynamics are initialized at the sharp
minima. Left : The trajectory of each compared dynamics for escaping
from the sharp minimum in one run.Right : Success rate of arriving the

at solution in 100 repeated runs



One hidden layer network

Figure: One hidden layer neural networks. The solid and the dotted lines
represent the value of Tr(H�) and Tr( H ��), respectively. The number of
hidden nodes varies inf 32; 128; 512g.



FashionMNIST experiments
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Figure: FashionMNIST experiments. Left: The first 400 eigenvalues of
Hessian at ��GD , the sharp minima found by GD after 3000 iterations.

Middle: The projection coefficient estimation â =
uT

1 Σu1TrH
�1TrΣ in

Proposition 1. Right: Tr(HtΣt) versus Tr(HtΣ̄t) during SGD
optimization initialized from ��GD , Σ̄t = TrΣt

D I denotes the isotropic
equivalence of SGD noise.
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