The **Anisotropic Noise** in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects

Zhanxing Zhu*, Jingfeng Wu*, Bing Yu, Lei Wu, Jinwen Ma.

Peking University Beijing Institute of Big Data Research

June, 2019

The implicit bias of stochastic gradient descent

- Compared with gradient descent (GD), stochastic gradient descent (SGD) tends to generalize better.
- This is attributed to the noise in SGD.
- In this work we study the anisotropic structure of SGD noise and its importance for escaping and regularization.

Stochastic gradient descent and its variants

Loss function $L(\theta) := \frac{1}{N} \sum_{i=1}^{N} \ell(x_i; \theta)$. Gradient Langevin dynamic (GLD) $\theta_{t+1} = \theta_t - \eta \nabla_{\theta} L(\theta_t) + \eta \epsilon_t, \ \epsilon_t \sim \mathcal{N}\left(0, \sigma_t^2 I\right)$. Stochastic gradient descent (SGD) $\theta_{t+1} = \theta_t - \eta \tilde{g}(\theta_t), \ \tilde{g}(\theta_t) = \frac{1}{m} \sum_{x \in B_t} \nabla_{\theta} \ell(x; \theta_t)$. The structure of SGD noise $\tilde{g}(\theta_t) \sim \mathcal{N}\left(\nabla L(\theta_t), \Sigma^{\text{sgd}}(\theta_t)\right), \ \Sigma^{\text{sgd}}(\theta_t) \approx \frac{1}{m} \left[\frac{1}{N} \sum_{i=1}^{N} \nabla \ell(x_i; \theta_t) \nabla \ell(x_i; \theta_t)^T - \nabla L(\theta_t) \nabla L(\theta_t)^T\right]$.

SGD reformulation

$$\theta_{t+1} = \theta_t - \eta \nabla L(\theta_t) + \eta \epsilon_t, \ \epsilon_t \sim \mathcal{N}\left(0, \Sigma^{\mathsf{sgd}}(\theta_t)\right).$$

GD with unbiased noise

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} L(\theta_t) + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \Sigma_t).$$
(1)

Iteration (1) could be viewed as a discretization of the following continuous stochastic differential equation (SDE):

$$\mathrm{d}\theta_t = -\nabla_\theta L(\theta_t) \,\mathrm{d}t + \sqrt{\Sigma_t} \,\mathrm{d}W_t. \tag{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Next we study the role of noise structure Σ_t by analyzing the continous SDE (2).

Escaping efficiency

Definition (Escaping efficiency)

Suppose the SDE (2) is initialized at minimum θ_0 , then for a fixed time *t* small enough, the *escaping efficiency* is defined as the increase of loss potential:

$$\mathbb{E}_{\theta_t}[L(\theta_t) - L(\theta_0)] \tag{3}$$

Under suitable approximations, we could compute the escaping efficiency for SDE (2),

$$\mathbb{E}[L(\theta_t) - L(\theta_0)] = -\int_0^t \mathbb{E}\left[\nabla L^T \nabla L\right] + \int_0^t \frac{1}{2} \mathbb{E} \mathrm{Tr}(H_t \Sigma_t) \,\mathrm{d}t \quad (4)$$
$$\approx \frac{1}{4} \mathrm{Tr}\left(\left(I - e^{-2Ht}\right) \Sigma\right) \approx \frac{t}{2} \mathrm{Tr}(H\Sigma) \,. \tag{5}$$

Thus Tr $(H\Sigma)$ serves as an important indicator for measuring the escaping behavior of noises with different structures.

Factors affecting the escaping behavior

The noise scale For Gaussian noise $\epsilon_t \sim \mathcal{N}(0, \Sigma_t)$, we can measure its scale by $\|\epsilon_t\|_{\text{trace}} := \mathbb{E}[\epsilon_t^T \epsilon_t] = \cdots = \text{Tr}(\Sigma_t)$. Thus based on $\text{Tr}(H\Sigma)$, we see that the larger noise scale is, the faster the escaping happens. To eliminate the impact of noise scale, assume that

given time t,
$$Tr(\Sigma_t)$$
 is constant. (6)

The ill-conditioning of minima For the minima with Hessian as scalar matrix $H_t = \lambda I$, the noises in same magnitude make no difference since $Tr(H_t \Sigma_t) = \lambda Tr \Sigma_t$.

The structure of noise For the ill-conditioned minima, the structure of noise plays an important role on the escaping!

The impact of noise structure

Proposition

Let $H_{D \times D}$ and $\Sigma_{D \times D}$ be semi-positive definite. If

1. **H** is ill-conditioned. Let $\lambda_1, \lambda_2 \dots \lambda_D$ be the eigenvalues of *H* in descent order, and for some constant $k \ll D$ and $d > \frac{1}{2}$, the eigenvalues satisfy

$$\lambda_1 > 0, \ \lambda_{k+1}, \lambda_{k+2}, \dots, \lambda_D < \lambda_1 D^{-d};$$
(7)

2. Σ is "aligned" with *H*. Let u_i be the corresponding unit eigenvector of eigenvalue λ_i , for some projection coefficient a > 0, we have

$$u_1^T \Sigma u_1 \ge a \lambda_1 \frac{Tr \Sigma}{Tr H}.$$
(8)

Then for such anisotropic Σ and its isotropic equivalence $\overline{\Sigma} = \frac{Tr\Sigma}{D}I$ under constraint (6), we have the follow ratio describing their difference in term of escaping efficiency,

$$\frac{Tr(H\Sigma)}{Tr(H\bar{\Sigma})} = \mathcal{O}\left(aD^{(2d-1)}\right), \quad d > \frac{1}{2}.$$
(9)

Analyze the noise of SGD via Proposition 1

By Proposition 1, The anisotropic noises satisfying the two conditions indeed help escape from the ill-conditioned minima. Thus to see the importance of SGD noise, we only need to show it meets the two conditions.

Condition 1 is naturally hold for neural networks, thanks to their over-parameterization!

• See the following Proposition 2 for the second condition.

SGD noise and Hessian

Proposition

Consider a binary classification problem with data $\{(x_i, y_i)\}_{i \in I}, y \in \{0, 1\}$, and mean square loss, $L(\theta) = \mathbb{E}_{(x,y)} \|\phi \circ f(x; \theta) - y\|^2$, where f denotes the network and ϕ is a threshold activation function,

$$\phi(f) = \min\{\max\{f, \delta\}, 1 - \delta\},\tag{10}$$

 δ is a small positive constant. Suppose the network f satisfies:

- 1. it has one hidden layer and piece-wise linear activation;
- 2. the parameters of its output layer are fixed during training.

Then there is a constant a > 0, for θ close enough to minima θ^* ,

$$u(\theta)^T \Sigma(\theta) u(\theta) \ge a\lambda(\theta) \frac{Tr\Sigma(\theta)}{TrH(\theta)}$$
 (11)

holds almost everywhere, for $\lambda(\theta)$ and $u(\theta)$ being the maximal eigenvalue and its corresponding eigenvector of Hessian $H(\theta)$.

Examples of different noise structures

Dynamics	Noise ϵ_t	Remarks
SGD	$\epsilon_t \sim \mathcal{N}\left(0, \Sigma_t^{sgd}\right)$	Σ_t^{sgd} is the gradient covariance matrix.
GLD	$\epsilon_t \sim \mathcal{N}\left(0, \varrho_t^2 I\right)$	ϱ_t is a tunable constant.
constant		
GLD dy-	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t^2 I\right)$	σ_t is adjusted to force the noise share
namic		the same magnitude with SGD noise, similarly hereinafter.
GLD di-	$\epsilon_t \sim \mathcal{N}\left(0, \operatorname{diag}(\Sigma_t^{\operatorname{sgd}})\right)$	diag(Σ_t^{sgd}) is the diagonal of the covari-
agonal		ance of SGD noise Σ_t^{sgd} .
GLD	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t \tilde{\mathbf{\Sigma}}_t\right)$	$ ilde{\Sigma_t}$ is the best low rank approximation
leading		of Σ_t^{sgd} .
GLD	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t \tilde{H}_t\right)$	$ ilde{H}_t$ is the best low rank approximation
Hessian		of the Hessian.
GLD 1st	$\epsilon_t \sim \mathcal{N}\left(0, \sigma_t \lambda_1 u_1 u_1^T\right)$	λ_1, u_1 are the maximal eigenvalue and
eigven(H)		its corresponding unit eigenvector of the
		Hessian.

Table: Compared dynamics defined in Eq. (1).

2-D toy example

Figure: 2-D toy example. Compared dynamics are initialized at the sharp minima. Left: The trajectory of each compared dynamics for escaping from the sharp minimum in one run. **Right**: Success rate of arriving the flat solution in 100 repeated runs

One hidden layer network

Figure: One hidden layer neural networks. The solid and the dotted lines represent the value of $Tr(H\Sigma)$ and $Tr(H\overline{\Sigma})$, respectively. The number of hidden nodes varies in {32, 128, 512}.

FashionMNIST experiments

Figure: FashionMNIST experiments. Left: The first 400 eigenvalues of Hessian at θ_{GD}^* , the sharp minima found by GD after 3000 iterations. Middle: The projection coefficient estimation $\hat{a} = \frac{u_1^T \Sigma u_1 \text{Tr}H}{\lambda_1 \text{Tr}\Sigma}$ in Proposition 1. Right: $\text{Tr}(H_t \Sigma_t)$ versus $\text{Tr}(H_t \overline{\Sigma}_t)$ during SGD optimization initialized from θ_{GD}^* , $\overline{\Sigma}_t = \frac{\text{Tr}\Sigma_t}{D}I$ denotes the isotropic equivalence of SGD noise.

FashionMNIST experiments

Figure: FashionMNIST experiments. Compared dynamics are initialized at θ_{GD}^* found by GD, marked by the vertical dashed line in iteration 3000. **Left**: Test accuracy versus iteration. **Right**: Expected sharpness versus iteration. Expected sharpness (the higher the sharper) is measured as $\mathbb{E}_{\nu \sim \mathcal{N}(0, \delta^2 I)} [L(\theta + \nu)] - L(\theta)$, and $\delta = 0.01$, the expectation is computed by average on 1000 times sampling.

Conclusion

- ► We explore the escaping behavior of SGD-like processes through analyzing their continuous approximation.
- We show that thanks to the anisotropic noise, SGD could escape from sharp minima efficiently, which leads to implicit regularization effects.
- Our work raises concerns over studying the structure of SGD noise and its effect.
- Experiments support our understanding.

Poster: Wed Jun 12th 06 : 30 \sim 09 : 00 PM @ Pacific Ballroom #97

