The Anisotropic Noise in Stochastic Gradient
Descent: Its Behavior of Escaping from Sharp
Minima and Regularization Effects

Zhanxing Zhu*, Jingfeng Wu*, Bing Yu, Lei Wu, Jinwen Ma.
Peking University Beijing Institute of Big Data Research

June, 2019



The implicit bias of stochastic gradient descent

I Compared with gradient descent (GD), stochastic gradient
descent (SGD) tends to generalize better.

I This is attributed to the noise in SGD.

I In this work we study the anisotropic structure of SGD
noise and its importance for escaping and regularization.



Stochastic gradient descent and its variants
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SGD reformulation
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GD with unbiased noise

t+1 =t rL(o)+ v ¢+ N (0 ¢): 1)

Iteration (1) could be viewed as a discretization of the following
continuous stochastic di erential equation (SDE):

P —
dt= r L( t)dt+ tth: (2)

Next we study the role of noise structure; by analyzing the
continous SDE (2).



Escaping e ciency

De nition (Escaping e ciency)

Suppose the SDE (2) is initialized at minimumny, then for a xed
time t small enough, theescaping e ciencyis de ned as the
increase of loss potential:

E. L) L(o)l ®3)

Under suitable approximations, we could compute the escaping
e ciency for SDE (2),
Zi h A 1
E[L() L(o)]= ErLlirL + SET(H )dt (4)
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Thus Tr(H )serves as an important indicator for measuring the
escaping behavior of noises with di erent structures.



Factors a ecting the escaping behavior

The noise scale For Gaussian noise N (0; ), we can measure
its scale b (Kyaee = E[{ t]=  =Tr( ). Thus
based on TrH ), we see that the larger noise scale
is, the faster the escaping happens.

To eliminate the impact of noise scale, assume that

given time t;Tr( ) is constant: (6)

The ill-conditioning of minima For the minima with Hessian as
scalar matrixH; = |, the noises in same magnitude
make no dierence since TH; ()= Tr ;.

The structure of noise For the ill-conditioned minima, the
structure of noise plays an important role on the
escaping!



The impact of noise structure

Proposition
LetHp p and p p be semi-positive de nite. If
1. His ill-conditioned. Let i1; »::: p be the eigenvalues df in

descent order, and for some constaknt D andd > % the
eigenvalues satisfy

1>0; s ke2:ii; p< 1D 9 @)

2. is\aligned" with H. Let u; be the corresponding unit
eigenvector of eigenvalug, for some projection coe cienta> 0,
we have

)

Then for such anisotropic and its isotropic equivalence= T'TI under
constraint (6), we have the follow ratio describing their di erence in term
of escaping e ciency,

Tr(H)
Tr(H)
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Analyze the noise of SGD via Proposition 1

By Proposition 1, The anisotropic noises satisfying the two
conditions indeed help escape from the ill-conditioned minima.
Thus to see the importance of SGD noise, we only need to show it

meets the two conditions.

I Condition 1 is naturally hold for neural networks, thanks to
their over-parameterization!
I See the following Proposition 2 for the second condition.



SGD noise and Hessian

Proposition
Consider a binary classi cation problem with datdx;; yi)gi2;y 2 f 0; 19,
and mean square lost( ) = E.y) f(x;) vy 2; wheref denotes

the network and is a threshold activation function,
(f)=minfmaxf; g1 o (20)
is a small positive constant.
Suppose the network satis es:
1. it has one hidden layer and piece-wise linear activation;
2. the parameters of its output layer are xed during training.

Then there is a constana > 0, for close enough to minima

Tr( )
TrH( )

u( )t ( Ju() a() (11)

holds almost everywhere, for{ ) andu( ) being the maximal eigenvalue
and its corresponding eigenvector of Hessk( ).



Examples of di erent noise structures

Table: Compared dynamics de ned in Eqg. (1).

Dynamics| Noise t Remarks

SGD ¢ N 0 v S8 is the gradient covariance matrix.

GLD ¢t N 0%l % is a tunable constant.

constant

GLD dy- ¢t N 0 7l t is adjusted to force the noise share

namic the same magnitude with SGD noise,
similarly hereinafter.

GLD di- | « N 0;diag( 9% diag( 9% is the diagonal of the covari-

agonal ance of SGD noise $9%,

GLD t N 0 t+7t 7t is the best low rank approximation

leading of 99

GLD t N 0 tHt Ht is the best low rank approximation

Hessian of the Hessian.

GLD 1st t N 0; ¢ 1u1uI 1;uU; are the maximal eigenvalue and

eigven(H) its corresponding unit eigenvector of the
Hessian.




2-D toy example

Figure: 2-D toy example. Compared dynamics are initialized at the sharp
minima. Left: The trajectory of each compared dynamics for escaping
from the sharp minimum in one runRight: Success rate of arriving the

at solution in 100 repeated runs



One hidden layer network

Figure: One hidden layer neural networks. The solid and the dotted lines
represent the value of TH ) and Tr( H ), respectively. The number of
hidden nodes varies ih32; 128 512.



FashionMNIST experiments

eigenvalue spectrum at iter 3C

iteration

Figure: FashionMNIST experiments. Left: The first 400 eigenvalues of

Hessian at g, the sharp minima found by GD after 3000 iterations.
T
Middle: The projection coefficient estimation & = ulzlu% in

Proposition 1. Right: Tr(H¢X¢) versus Tr(HtZt) during SGD
optimization initialized from gp, Y= r):‘I denotes the isotropic
equivalence of SGD noise.
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