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◮ Information Bottleneck Theory
[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Gabrié et al.’18]

⋆ Goal: Mathematically analyze IB theory & test ‘Compression’

What drives the evolution of internal representations?

What are properties of learned representations?

How do fully trained networks process information?
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Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

Information Plane: Evolution of
(

I(X; Tℓ), I(Y ; Tℓ)
)

during training
[

I(A; B) = DKL(PA,B ||PA ⊗ PB)
Discrete

=
∑

a,b PA,B(a, b) log
PA,B(a,b)

PA(a)PB(b)
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IB Theory Claim: Training comprises 2 phases

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

2 Compression: I(X; Tℓ) slowly drops (long)

[Shwartz-Tishby’17]
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  DNN

Feature Space (X)

X ∼ Unif(X )

|X | = 3000
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1 For non-negligible bin size I
(

X ; Bin(Tℓ)
)

6= I(X ; Tℓ)

2 I
(

X ; Bin(Tℓ)
)

highly sensitive to user-defined bin size:

⊛⊛⊛ Real Problem: Mismatch between I(X; Tℓ) measurement and model

10
0

10
1

10
2

10
3

10
4

Epoch

0

4

8

M
I
(n

a
ts

)

bin size = 0.0001

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

bin size = 0.001 bin size = 0.01 bin size = 0.1

5/11



Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

6/11



Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

6/11



Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ X 7→ Tℓ is a parametrized channel (by DNN’s parameters)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

6/11



Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ X 7→ Tℓ is a parametrized channel (by DNN’s parameters)

=⇒ I(X; Tℓ) is a function of parameters!

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

6/11



Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ X 7→ Tℓ is a parametrized channel (by DNN’s parameters)

=⇒ I(X; Tℓ) is a function of parameters!

⊛⊛⊛ Challenge: How to accurately track I(X; Tℓ)?
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Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·
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∣

∣

∣ ≤ cd
σ,K · n− 1

2

7/11



High-Dim. & Nonparametric Functional Estimation

Distill I(X;Tℓ) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P ∗ Nσ) from n i.i.d. samples Sn,(Si)
n
i=1 of P ∈ Fd (non-

parametric class) and knowledge of Nσ (Gaussian measure N (0, σ2Id)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap η) is Ω
(

2d

ηd

)
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Optimality: ĥ(Sn, σ) attains sharp dependence on both n and d!
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations
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)

= H
(

Bin(Tℓ)
)

H
(

Bin(Tℓ)
)

measures clustering (maximized by uniform distribution)

Test: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated in noisy DNNs⋆

=⇒ Past works not measuring MI but clustering (via binned-MI)!

By-Product Result:

Refute ‘compression (tight clustering) improves generalization’ claim

[Come see us at poster #96 for details]
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Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T ) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T ) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Optimal estimator (in n and d) for accurate MI estimation

◮ Clustering of learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

◮ Compression/clustering and generalization and not necessarily related

Thank you!
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

⊛⊛⊛ weight orthonormality regularization [Cisse et al.’17]
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations
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Mutual Information Estimation in Noisy DNNs

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)
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Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

⊛⊛⊛ Know the distribution Nσ of Zℓ (noise injected by design)

⊛⊛⊛ Extremely complicated P =⇒ Treat as unknown

⊛⊛⊛ Easily get i.i.d. samples from P via DNN forward pass

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1
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Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ Nσ) via n i.i.d. samples Sn,(Si)
n
i=1 from unknown

P ∈ Fd (nonparametric class) and knowledge of Nσ (noise distribution).
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Nonparametric Class: Specified by DNN architecture (d = Tℓ ‘width’)

Goal: Simple & parallelizable for efficient implementation

Estimator: ĥ(Sn, σ) , h(P̂Sn ∗ Nσ), where P̂Sn , 1
n

n
∑

i=1
δSi

Plug-in: ĥ is plug-in est. for the functional Tσ(P ) , h(P ∗ Nσ)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ Nσ) via n i.i.d. samples Sn,(Si)
n
i=1 from unknown

P ∈ Fd (nonparametric class) and knowledge of Nσ (noise distribution).
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Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.
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For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.

Comments:

Explicit Expression: Enables concrete error bounds in simulations

Minimax Rate Optimal: Attains parametric estimation rate O
(

n− 1
2
)

Proof (initial step): Based on [Polyanskiy-Wu’16]

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ . W1(P ∗ Nσ, P̂Sn ∗ Nσ)

=⇒ Analyze empirical 1-Wasserstein distance under Gaussian convolutions
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Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any σ > 0, sufficiently large d and sufficiently small η > 0, we have

n⋆(η, σ, Fd) = Ω
(

2γ(σ)d

ηd

)

, where γ(σ)>0 is monotonically decreasing in σ.

=⇒ O

(

cd

√
n

)

rate attained by the plugin estimator is sharp in n and d

Proof (main ideas):

Relate h(P ∗ Nσ) to Shannon entropy H(Q)

supp(Q) = peak-constrained AWGN capacity achieving codebook Cd

H(Q) estimation sample complexity Ω
(

|Cd|
η log |Cd|

)

[Valiant-Valiant’10]

11/11


