Estimating Information Flow in Deep Neural Networks

Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kingsbury and Yury Polyanskiy

MIT, IBM Research, MIT-IBM Watson AI Lab

International Conference on Machine Learning

June 12th, 2019

• Lacking Theory: Macroscopic understanding of Deep Learning

Lacking Theory: Macroscopic understanding of Deep Learning ٥

What drives the evolution of internal representations?

- Lacking Theory: Macroscopic understanding of Deep Learning
 - 2
- What drives the evolution of internal representations?
- What are properties of learned representations?

- Lacking Theory: Macroscopic understanding of Deep Learning
 - What drives the evolution of internal representations?
 - ? What are properties of learned representations?
 - P How do fully trained networks process information?

• Lacking Theory: Macroscopic understanding of Deep Learning

- What drives the evolution of internal representations?
- What are properties of learned representations?
- Phow do fully trained networks process information?

• Attempts to Understand Effectiveness of DL:

- Structure of loss landscape [Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]
- Wavelets and sparse coding [Bruna-Mallat'13, Giryes et al.'16, Papyan et al.'16]
- Adversarial examples [Szegedy et al.'14, Nguyen et al.'17, Liu et al.'16, Cisse et al.'16]
- Information Bottleneck Theory [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.'18]

• Lacking Theory: Macroscopic understanding of Deep Learning

- What drives the evolution of internal representations?
- What are properties of learned representations?
- Phow do fully trained networks process information?

• Attempts to Understand Effectiveness of DL:

- Structure of loss landscape [Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]
- Wavelets and sparse coding [Bruna-Mallat'13, Giryes et al.'16, Papyan et al.'16]

Adversarial examples [Szegedy et al.'14, Nguyen et al.'17, Liu et al.'16, Cisse et al.'16]

Information Bottleneck Theory
 [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.'18]

• Lacking Theory: Macroscopic understanding of Deep Learning

- What drives the evolution of internal representations?
- What are properties of learned representations?
- Phow do fully trained networks process information?

• Attempts to Understand Effectiveness of DL:

- Structure of loss landscape [Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]
- Wavelets and sparse coding [Bruna-Mallat'13, Giryes et al.'16, Papyan et al.'16]

Adversarial examples [Szegedy et al.'14, Nguyen et al.'17, Liu et al.'16, Cisse et al.'16]

Information Bottleneck Theory
 [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.'18]

★ Goal: Mathematically analyze IB theory & test 'Compression'

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

• Joint Distribution: $P_{X,Y}$

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

• Joint Distribution: $P_{X,Y} \implies P_{X,Y} \cdot P_{T_1,\dots,T_L|X}$

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

- Joint Distribution: $P_{X,Y} \implies P_{X,Y} \cdot P_{T_1,\dots,T_L|X}$
- Information Plane: Evolution of $(I(X;T_{\ell}), I(Y;T_{\ell}))$ during training

 $\left[I(A;B) = \mathsf{D}_{\mathsf{KL}}(P_{A,B}||P_A \otimes P_B) \stackrel{\text{Discrete}}{=} \sum_{a,b} P_{A,B}(a,b) \log \frac{P_{A,B}(a,b)}{P_A(a)P_B(b)}\right]$

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

IB Theory Claim: Training comprises 2 phases

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

IB Theory Claim: Training comprises 2 phases

) Fitting: $I(Y;T_{\ell}) \& I(X;T_{\ell})$ rise (short)

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

IB Theory Claim: Training comprises 2 phases

) Fitting: $I(Y;T_{\ell})$ & $I(X;T_{\ell})$ rise (short)

Compression: $I(X; T_{\ell})$ slowly drops (long)

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 \implies $I(X;T_{\ell})$ is independent of the DNN parameters

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 \implies $I(X;T_{\ell})$ is independent of the DNN parameters

• $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 \implies $I(X;T_{\ell})$ is independent of the DNN parameters

• $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 \implies $I(X;T_{\ell})$ is independent of the DNN parameters

• $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 \implies $I(X;T_{\ell})$ is independent of the DNN parameters

- $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)
- **Past Works:** Use binning-based proxy of $I(X; T_{\ell})$ (aka quantization)

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 \implies $I(X;T_{\ell})$ is independent of the DNN parameters

- $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)
- Past Works: Use binning-based proxy of $I(X;T_{\ell})$ (aka quantization)
 - For non-negligible bin size $I(X; Bin(T_{\ell})) \neq I(X; T_{\ell})$

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid) $\implies I(X;T_{\ell})$ is independent of the DNN parameters

- $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)
- **Past Works:** Use binning-based proxy of $I(X; T_{\ell})$ (aka quantization)
 - For non-negligible bin size $I(X; Bin(T_{\ell})) \neq I(X; T_{\ell})$
 - **2** $I(X; Bin(T_{\ell}))$ highly sensitive to user-defined bin size:

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 \implies $I(X;T_{\ell})$ is independent of the DNN parameters

- $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)
- **Past Works:** Use binning-based proxy of $I(X; T_{\ell})$ (aka quantization)
 - For non-negligible bin size $I(X; Bin(T_{\ell})) \neq I(X; T_{\ell})$

2 $I(X; Bin(T_{\ell}))$ highly sensitive to user-defined bin size:

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

- \implies $I(X;T_{\ell})$ is independent of the DNN parameters
- $I(X;T_{\ell})$ a.s. infinite (continuous X) or constant H(X) (discrete X)
- **Past Works:** Use binning-based proxy of $I(X; T_{\ell})$ (aka quantization)
 - For non-negligible bin size $I(X; Bin(T_{\ell})) \neq I(X; T_{\ell})$
 - **2** $I(X; Bin(T_{\ell}))$ highly sensitive to user-defined bin size:

Real Problem: Mismatch between $I(X; T_{\ell})$ measurement and model

Modification: Inject (small) Gaussian noise to neurons' output

Modification: Inject (small) Gaussian noise to neurons' output

• Formally: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Modification: Inject (small) Gaussian noise to neurons' output

• Formally: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

 \implies $X \mapsto T_{\ell}$ is a **parametrized channel** (by DNN's parameters)

Modification: Inject (small) Gaussian noise to neurons' output

• Formally: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

- \implies $X \mapsto T_{\ell}$ is a **parametrized channel** (by DNN's parameters)
- \implies $I(X;T_{\ell})$ is a **function** of parameters!

Modification: Inject (small) Gaussian noise to neurons' output

• Formally: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

 \implies $X \mapsto T_{\ell}$ is a **parametrized channel** (by DNN's parameters)

 \implies $I(X;T_{\ell})$ is a **function** of parameters!

Challenge: How to accurately track $I(X; T_{\ell})$?

Distill $I(X;T_{\ell})$ Estimation into Noisy Differential Entropy Estimation:

Estimate $h(P * \mathcal{N}_{\sigma})$ from n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ of $P \in \mathcal{F}_d$ (non-parametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}(0, \sigma^2 \mathbf{I}_d)$).

Distill $I(X;T_{\ell})$ Estimation into Noisy Differential Entropy Estimation:

Estimate $h(P * \mathcal{N}_{\sigma})$ from n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ of $P \in \mathcal{F}_d$ (non-parametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}(0, \sigma^2 \mathbf{I}_d)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^d}{\eta d}\right)$

Distill $I(X;T_{\ell})$ Estimation into Noisy Differential Entropy Estimation:

Estimate $h(P * \mathcal{N}_{\sigma})$ from n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ of $P \in \mathcal{F}_d$ (non-parametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}(0, \sigma^2 \mathbf{I}_d)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^d}{\eta d}\right)$

Structured Estimator*:
$$\hat{h}(S^n, \sigma) \triangleq h(\hat{P}_n * \mathcal{N}_{\sigma})$$
, where $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

High-Dim. & Nonparametric Functional Estimation

Distill $I(X;T_{\ell})$ Estimation into Noisy Differential Entropy Estimation:

Estimate $h(P * \mathcal{N}_{\sigma})$ from n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ of $P \in \mathcal{F}_d$ (non-parametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}(0, \sigma^2 \mathbf{I}_d)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(rac{2^d}{\eta d}
ight)$

Structured Estimator^{*}:
$$\hat{h}(S^n, \sigma) \triangleq h(\hat{P}_n * \mathcal{N}_{\sigma})$$
, where $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For $\mathcal{F}_{d,K}^{(SG)} \triangleq \{P \mid P \text{ is } K\text{-subgaussian in } \mathbb{R}^d\}, d \ge 1 \text{ and } \sigma > 0$, we have $\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E}_{S^n} \left| h(P * \mathcal{N}_{\sigma}) - \hat{h}(S^n, \sigma) \right| \le c_{\sigma,K}^d \cdot n^{-\frac{1}{2}}$

High-Dim. & Nonparametric Functional Estimation

Distill $I(X;T_{\ell})$ Estimation into Noisy Differential Entropy Estimation:

Estimate $h(P * \mathcal{N}_{\sigma})$ from n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ of $P \in \mathcal{F}_d$ (non-parametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}(0, \sigma^2 \mathbf{I}_d)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^d}{\eta d}\right)$

Structured Estimator*:
$$\hat{h}(S^n, \sigma) \triangleq h(\hat{P}_n * \mathcal{N}_{\sigma})$$
, where $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For
$$\mathcal{F}_{d,K}^{(SG)} \triangleq \{P | P \text{ is } K\text{-subgaussian in } \mathbb{R}^d\}, d \ge 1 \text{ and } \sigma > 0$$
, we have
 $\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E}_{S^n} \left| h(P * \mathcal{N}_{\sigma}) - \hat{h}(S^n, \sigma) \right| \le c_{\sigma,K}^d \cdot n^{-\frac{1}{2}}$

Optimality: $\hat{h}(S^n, \sigma)$ attains sharp dependence on both n and d!

Single Neuron Classification:

 \circledast Center & sharpen transition (\iff increase w and keep b = -2w)

✓ Correct classification performance

Mutual Information:

• Mutual Information: $I(X;T) = I(S_{w,b};S_{w,b}+Z)$

- Mutual Information: $I(X;T) = I(S_{w,b};S_{w,b}+Z)$
- $\implies I(X;T) \text{ is } \# \text{ bits (nats) transmittable over AWGN with symbols} \\ S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \}$

- Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$
- $\implies I(X;T) \text{ is } \# \text{ bits (nats) transmittable over AWGN with symbols} \\ S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \} \longrightarrow \{ \pm 1 \}$

- Mutual Information: $I(X;T) = I(S_{w,b};S_{w,b}+Z)$
- $\implies I(X;T) \text{ is } \# \text{ bits (nats) transmittable over AWGN with symbols} \\ S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \} \longrightarrow \{ \pm 1 \}$

- Mutual Information: $I(X;T) = I(S_{w,b};S_{w,b}+Z)$
- $\implies I(X;T) \text{ is } \# \text{ bits (nats) transmittable over AWGN with symbols}$ $S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \} \longrightarrow \{ \pm 1 \}$

Noisy version of DNN from [Shwartz-Tishby'17]:

Noisy version of DNN from [Shwartz-Tishby'17]:

• Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

Noisy version of DNN from [Shwartz-Tishby'17]:

• Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments
- \implies Compression of $I(X;T_{\ell})$ driven by clustering of representations

 $I(X;T_{\ell})$ is constant/infinite \implies Doesn't measure clustering

 $I(X;T_{\ell})$ is constant/infinite \implies Doesn't measure clustering

<u>**Reexamine Measurements:**</u> Computed $I(X; Bin(T_{\ell})) = H(Bin(T_{\ell}))$

 $I(X;T_{\ell})$ is constant/infinite \implies Doesn't measure clustering

<u>Reexamine Measurements:</u> Computed $I(X; Bin(T_{\ell})) = H(Bin(T_{\ell}))$

• $H(Bin(T_{\ell}))$ measures clustering (maximized by uniform distribution)

 $I(X;T_{\ell})$ is constant/infinite \implies Doesn't measure clustering

<u>**Reexamine Measurements:</u>** Computed $I(X; Bin(T_{\ell})) = H(Bin(T_{\ell}))$ </u>

• $H(Bin(T_{\ell}))$ measures clustering (maximized by uniform distribution)

<u>Test</u>: $I(X; T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated in noisy DNNs^{*}

 \star When bin size chosen \propto noise std.

 $I(X;T_\ell)$ is constant/infinite \implies Doesn't measure clustering

<u>Reexamine Measurements:</u> Computed $I(X; Bin(T_{\ell})) = H(Bin(T_{\ell}))$

• $H(Bin(T_{\ell}))$ measures clustering (maximized by uniform distribution)

<u>Test</u>: $I(X;T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated in noisy DNNs^{*}

 \implies Past works not measuring MI but clustering (via binned-MI)!

 $I(X;T_\ell)$ is constant/infinite \implies Doesn't measure clustering

<u>Reexamine Measurements:</u> Computed $I(X; Bin(T_{\ell})) = H(Bin(T_{\ell}))$

• $H(Bin(T_{\ell}))$ measures clustering (maximized by uniform distribution)

<u>Test</u>: $I(X; T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated in noisy DNNs^{*}

 \implies Past works not measuring MI but clustering (via binned-MI)!

By-Product Result:

 $I(X;T_\ell)$ is constant/infinite \implies Doesn't measure clustering

<u>**Reexamine Measurements:</u>** Computed $I(X; Bin(T_{\ell})) = H(Bin(T_{\ell}))$ </u>

• $H(Bin(T_{\ell}))$ measures clustering (maximized by uniform distribution)

<u>Test</u>: $I(X; T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated in noisy DNNs^{*}

 \implies Past works not measuring MI but clustering (via binned-MI)!

By-Product Result:

• Refute 'compression (tight clustering) improves generalization' claim

[Come see us at poster #96 for details]

• Reexamined Information Bottleneck Compression:

 $\blacktriangleright \ I(X;T)$ fluctuations in det. DNNs are theoretically impossible

- $\blacktriangleright I(X;T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) I(X;T) dynamics during training

- I(X;T) fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs

- I(X;T) fluctuations in det. DNNs are theoretically impossible
- > Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - ▶ Optimal estimator (in *n* and *d*) for accurate MI estimation

- I(X;T) fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - Optimal estimator (in n and d) for accurate MI estimation
 - Clustering of learned representations is the source of compression

- I(X;T) fluctuations in det. DNNs are theoretically impossible
- > Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - Optimal estimator (in n and d) for accurate MI estimation
 - Clustering of learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering

- I(X;T) fluctuations in det. DNNs are theoretically impossible
- > Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - ▶ Optimal estimator (in *n* and *d*) for accurate MI estimation
 - Clustering of learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering
 - Compression/clustering and generalization and not necessarily related

• Reexamined Information Bottleneck Compression:

- I(X;T) fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - ▶ Optimal estimator (in *n* and *d*) for accurate MI estimation
 - Clustering of learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering
 - Compression/clustering and generalization and not necessarily related

Thank you!

Noisy version of DNN from [Shwartz-Tishby'17]:

Noisy version of DNN from [Shwartz-Tishby'17]:

Noisy version of DNN from [Shwartz-Tishby'17]:

Noisy version of DNN from [Shwartz-Tishby'17]:

Noisy version of DNN from [Shwartz-Tishby'17]:

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments
- \implies Compression of $I(X;T_{\ell})$ driven by clustering of representations

Noisy DNN: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

• Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) - \int dP_X(x)h(T_{\ell}|X=x)$

- Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) \int dP_X(x)h(T_{\ell}|X=x)$
- Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \mathcal{N}_{\sigma}$

- Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) \int dP_X(x)h(T_{\ell}|X=x)$
- Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \mathcal{N}_{\sigma}$

- Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) \int dP_X(x)h(T_{\ell}|X=x)$
- Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + \mathbf{Z}_{\ell} \sim P * \mathcal{N}_{\sigma}$

Noisy DNN: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

- Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) \int dP_X(x)h(T_{\ell}|X=x)$
- Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \mathcal{N}_{\sigma}$

(*) Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)

Noisy DNN: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

- Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) \int dP_X(x)h(T_{\ell}|X=x)$
- Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \mathcal{N}_{\sigma}$

 \circledast Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)

- Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) \int dP_X(x)h(T_{\ell}|X=x)$
- Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \mathcal{N}_{\sigma}$
- \circledast Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)
- **Treat as unknown** \circledast **Extremely complicated** $P \implies$ Treat as unknown

- Mutual Information: $I(X;T_{\ell}) = h(T_{\ell}) \int dP_X(x)h(T_{\ell}|X=x)$
- Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \mathcal{N}_{\sigma}$
- \circledast Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)
- **Treat as unknown** \circledast **Extremely complicated** $P \implies$ Treat as unknown
- \circledast Easily get i.i.d. samples from P via DNN forward pass

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ via n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ from <u>unknown</u>

 $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of \mathcal{N}_σ (noise distribution).

Estimate $h(P * \mathcal{N}_{\sigma})$ via n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ from <u>unknown</u>

 $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of \mathcal{N}_σ (noise distribution).

Nonparametric Class: Specified by DNN architecture $(d = T_{\ell} \text{ 'width'})$

Estimate $h(P * \mathcal{N}_{\sigma})$ via n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ from <u>unknown</u>

 $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of \mathcal{N}_σ (noise distribution).

Nonparametric Class: Specified by DNN architecture ($d = T_{\ell}$ 'width')

Goal: Simple & parallelizable for efficient implementation

Estimate $h(P * \mathcal{N}_{\sigma})$ via n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ from <u>unknown</u>

 $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of \mathcal{N}_σ (noise distribution).

Nonparametric Class: Specified by DNN architecture ($d = T_{\ell}$ 'width')

Goal: Simple & parallelizable for efficient implementation

Estimator:
$$\hat{h}(S^n, \sigma) \triangleq h(\hat{P}_{S^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

Estimate $h(P * \mathcal{N}_{\sigma})$ via n i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ from <u>unknown</u>

 $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of \mathcal{N}_σ (noise distribution).

Nonparametric Class: Specified by DNN architecture ($d = T_{\ell}$ 'width')

Goal: Simple & parallelizable for efficient implementation

Estimator:
$$\hat{h}(S^n, \sigma) \triangleq h(\hat{P}_{S^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$
• **Plug-in:** \hat{h} is plug-in est. for the functional $\mathsf{T}_{\sigma}(P) \triangleq h(P * \mathcal{N}_{\sigma})$

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any $\sigma > 0, \ d \ge 1$, we have $\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$ where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any $\sigma > 0, \ d \ge 1$, we have $\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$ where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Comments:

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any
$$\sigma > 0, \ d \ge 1$$
, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$
where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c .

Comments:

• Explicit Expression: Enables concrete error bounds in simulations

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any
$$\sigma > 0$$
, $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$
where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c .

Comments:

- Explicit Expression: Enables concrete error bounds in simulations
- Minimax Rate Optimal: Attains parametric estimation rate $O(n^{-\frac{1}{2}})$

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any
$$\sigma > 0, \ d \ge 1$$
, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$
where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c .

Comments:

- Explicit Expression: Enables concrete error bounds in simulations
- Minimax Rate Optimal: Attains parametric estimation rate $O(n^{-\frac{1}{2}})$

Proof (initial step): Based on [Polyanskiy-Wu'16]

$$\left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}) \right| \lesssim W_{1}(P * \mathcal{N}_{\sigma}, \hat{P}_{S^{n}} * \mathcal{N}_{\sigma})$$

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any
$$\sigma > 0, \ d \ge 1$$
, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$
where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c .

Comments:

- Explicit Expression: Enables concrete error bounds in simulations
- Minimax Rate Optimal: Attains parametric estimation rate $O(n^{-\frac{1}{2}})$

Proof (initial step): Based on [Polyanskiy-Wu'16]

$$\left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{S^n} * \mathcal{N}_{\sigma}) \right| \lesssim W_1(P * \mathcal{N}_{\sigma}, \hat{P}_{S^n} * \mathcal{N}_{\sigma})$$

 \implies Analyze empirical 1-Wasserstein distance under Gaussian convolutions

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

$$W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$$

infimum over all couplings of ${\cal P}$ and ${\cal Q}$

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

$$W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$$

infimum over all couplings of \boldsymbol{P} and \boldsymbol{Q}

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of \boldsymbol{P} and \boldsymbol{Q}

Empirical 1-Wasserstein Distance:

• Distribution P on \mathbb{R}^d

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of ${\boldsymbol{P}}$ and ${\boldsymbol{Q}}$

Empirical 1-Wasserstein Distance:

• Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (S_i)_{i=1}^n$

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of \boldsymbol{P} and \boldsymbol{Q}

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (S_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of \boldsymbol{P} and \boldsymbol{Q}

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (S_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$
- \implies Dependence on (n,d) of $\mathbb{E}W_1(P,\hat{P}_{S^n})$

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of ${\boldsymbol{P}}$ and ${\boldsymbol{Q}}$

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (S_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of \boldsymbol{P} and \boldsymbol{Q}

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (S_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of \boldsymbol{P} and \boldsymbol{Q}

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (S_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$
- \implies Dependence on (n,d) of $\mathbb{E}W_1(P,\hat{P}_{S^n})\gtrsim n^{-rac{1}{d}}$

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any d, we have $\mathbb{E}W_1(P * \mathcal{N}_{\sigma}, \hat{P}_{S^n} * \mathcal{N}_{\sigma}) \leq O_{\sigma,d}(n^{-\frac{1}{2}})$

p-Wasserstein Distance: For two distributions P and Q on \mathbb{R}^d and $p \ge 1$

 $W_p(P,Q) \triangleq \inf \left(\mathbb{E} \| X - Y \|^p \right)^{1/p}$

infimum over all couplings of \boldsymbol{P} and \boldsymbol{Q}

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^d \implies \text{i.i.d. Samples } (S_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{S^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$
- \implies Dependence on (n,d) of $\mathbb{E}W_1(P,\hat{P}_{S^n})\gtrsim n^{-\frac{1}{d}}$

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any d, we have $\mathbb{E}W_1(P * \mathcal{N}_{\sigma}, \hat{P}_{S^n} * \mathcal{N}_{\sigma}) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_{\sigma}(c^d n^{-\frac{1}{2}})$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0$, sufficiently large d and sufficiently small $\eta > 0$, we have $n^{\star}(\eta, \sigma, \mathcal{F}_d) = \Omega\left(\frac{2^{\gamma(\sigma)d}}{\eta d}\right)$, where $\gamma(\sigma) > 0$ is monotonically decreasing in σ .

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0$, sufficiently large d and sufficiently small $\eta > 0$, we have $n^{\star}(\eta, \sigma, \mathcal{F}_d) = \Omega\left(\frac{2^{\gamma(\sigma)d}}{\eta d}\right)$, where $\gamma(\sigma) > 0$ is monotonically decreasing in σ .

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0$, sufficiently large d and sufficiently small $\eta > 0$, we have $n^{\star}(\eta, \sigma, \mathcal{F}_d) = \Omega\left(\frac{2^{\gamma(\sigma)d}}{\eta d}\right)$, where $\gamma(\sigma) > 0$ is monotonically decreasing in σ .

Proof (main ideas):

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0$, sufficiently large d and sufficiently small $\eta > 0$, we have $n^{\star}(\eta, \sigma, \mathcal{F}_d) = \Omega\left(\frac{2^{\gamma(\sigma)d}}{\eta d}\right)$, where $\gamma(\sigma) > 0$ is monotonically decreasing in σ .

Proof (main ideas):

• Relate $h(P * N_{\sigma})$ to Shannon entropy H(Q) $\operatorname{supp}(Q) = \operatorname{peak-constrained} AWGN$ capacity achieving codebook C_d

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0$, sufficiently large d and sufficiently small $\eta > 0$, we have $n^{\star}(\eta, \sigma, \mathcal{F}_d) = \Omega\left(\frac{2^{\gamma(\sigma)d}}{\eta d}\right)$, where $\gamma(\sigma) > 0$ is monotonically decreasing in σ .

Proof (main ideas):

 Relate h(P * N_σ) to Shannon entropy H(Q) supp(Q) = peak-constrained AWGN capacity achieving codebook C_d
 H(Q) estimation sample complexity Ω (^{|C_d|}/_{η log |C_d|}) [Valiant-Valiant'10]