
Estimating Information Flow in Deep Neural

Networks

Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk,
Nam Nguyen, Brian Kingsbury and Yury Polyanskiy

MIT, IBM Research, MIT-IBM Watson AI Lab

International Conference on Machine Learning

June 12th, 2019

Deep Learning - What’s Under the Hood?

2/11

Deep Learning - What’s Under the Hood?

Lacking Theory: Macroscopic understanding of Deep Learning

2/11

Deep Learning - What’s Under the Hood?

Lacking Theory: Macroscopic understanding of Deep Learning

What drives the evolution of internal representations?

2/11

Deep Learning - What’s Under the Hood?

Lacking Theory: Macroscopic understanding of Deep Learning

What drives the evolution of internal representations?

What are properties of learned representations?

2/11

Deep Learning - What’s Under the Hood?

Lacking Theory: Macroscopic understanding of Deep Learning

What drives the evolution of internal representations?

What are properties of learned representations?

How do fully trained networks process information?

2/11

Deep Learning - What’s Under the Hood?

Lacking Theory: Macroscopic understanding of Deep Learning

Attempts to Understand Effectiveness of DL:

◮ Structure of loss landscape
[Saxe et al.’14, Choromanska et al.’15, Kawaguchi’16, Keskar et al.’17]

◮ Wavelets and sparse coding
[Bruna-Mallat’13, Giryes et al.’16, Papyan et al.’16]

◮ Adversarial examples
[Szegedy et al.’14, Nguyen et al.’17, Liu et al.’16, Cisse et al.’16]

◮ Information Bottleneck Theory
[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Gabrié et al.’18]

What drives the evolution of internal representations?

What are properties of learned representations?

How do fully trained networks process information?

2/11

Deep Learning - What’s Under the Hood?

Lacking Theory: Macroscopic understanding of Deep Learning

Attempts to Understand Effectiveness of DL:

◮ Structure of loss landscape
[Saxe et al.’14, Choromanska et al.’15, Kawaguchi’16, Keskar et al.’17]

◮ Wavelets and sparse coding
[Bruna-Mallat’13, Giryes et al.’16, Papyan et al.’16]

◮ Adversarial examples
[Szegedy et al.’14, Nguyen et al.’17, Liu et al.’16, Cisse et al.’16]

◮ Information Bottleneck Theory
[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Gabrié et al.’18]

What drives the evolution of internal representations?

What are properties of learned representations?

How do fully trained networks process information?

2/11

Deep Learning - What’s Under the Hood?

Lacking Theory: Macroscopic understanding of Deep Learning

Attempts to Understand Effectiveness of DL:

◮ Structure of loss landscape
[Saxe et al.’14, Choromanska et al.’15, Kawaguchi’16, Keskar et al.’17]

◮ Wavelets and sparse coding
[Bruna-Mallat’13, Giryes et al.’16, Papyan et al.’16]

◮ Adversarial examples
[Szegedy et al.’14, Nguyen et al.’17, Liu et al.’16, Cisse et al.’16]

◮ Information Bottleneck Theory
[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Gabrié et al.’18]

⋆ Goal: Mathematically analyze IB theory & test ‘Compression’

What drives the evolution of internal representations?

What are properties of learned representations?

How do fully trained networks process information?

2/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

Information Plane: Evolution of
(

I(X; Tℓ), I(Y ; Tℓ)
)

during training
[

I(A; B) = DKL(PA,B ||PA ⊗ PB)
Discrete

=
∑

a,b PA,B(a, b) log
PA,B(a,b)

PA(a)PB(b)

]

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

IB Theory Claim: Training comprises 2 phases

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

4/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

IB Theory Claim: Training comprises 2 phases

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

4/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

IB Theory Claim: Training comprises 2 phases

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

2 Compression: I(X; Tℓ) slowly drops (long)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

4/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

IB Theory Claim: Training comprises 2 phases

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

2 Compression: I(X; Tℓ) slowly drops (long)

[Shwartz-Tishby’17]

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

4/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

Feature Space (X)

X ∼ Unif(X)

|X | = 3000

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

 DNN

Feature Space (X)

X ∼ Unif(X)

|X | = 3000

Internal Rep. Space (Tℓ = f̃ℓ(X))

Tℓ ∼ Unif(Tℓ)

|Tℓ| = |X | = 3000

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

Past Works: Use binning-based proxy of I(X; Tℓ) (aka quantization)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

Past Works: Use binning-based proxy of I(X; Tℓ) (aka quantization)

1 For non-negligible bin size I
(

X ; Bin(Tℓ)
)

6= I(X ; Tℓ)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

Past Works: Use binning-based proxy of I(X; Tℓ) (aka quantization)

1 For non-negligible bin size I
(

X ; Bin(Tℓ)
)

6= I(X ; Tℓ)

2 I
(

X ; Bin(Tℓ)
)

highly sensitive to user-defined bin size:

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

Past Works: Use binning-based proxy of I(X; Tℓ) (aka quantization)

1 For non-negligible bin size I
(

X ; Bin(Tℓ)
)

6= I(X ; Tℓ)

2 I
(

X ; Bin(Tℓ)
)

highly sensitive to user-defined bin size:

10
0

10
1

10
2

10
3

10
4

Epoch

0

4

8

M
I
(n

a
ts

)

bin size = 0.0001

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

bin size = 0.001 bin size = 0.01 bin size = 0.1

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

I(X; Tℓ) a.s. infinite (continuous X) or constant H(X) (discrete X)

Past Works: Use binning-based proxy of I(X; Tℓ) (aka quantization)

1 For non-negligible bin size I
(

X ; Bin(Tℓ)
)

6= I(X ; Tℓ)

2 I
(

X ; Bin(Tℓ)
)

highly sensitive to user-defined bin size:

⊛⊛⊛ Real Problem: Mismatch between I(X; Tℓ) measurement and model

10
0

10
1

10
2

10
3

10
4

Epoch

0

4

8

M
I
(n

a
ts

)

bin size = 0.0001

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

bin size = 0.001 bin size = 0.01 bin size = 0.1

5/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ X 7→ Tℓ is a parametrized channel (by DNN’s parameters)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ X 7→ Tℓ is a parametrized channel (by DNN’s parameters)

=⇒ I(X; Tℓ) is a function of parameters!

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ X 7→ Tℓ is a parametrized channel (by DNN’s parameters)

=⇒ I(X; Tℓ) is a function of parameters!

⊛⊛⊛ Challenge: How to accurately track I(X; Tℓ)?

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

6/11

High-Dim. & Nonparametric Functional Estimation

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;Tℓ) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P ∗ Nσ) from n i.i.d. samples Sn,(Si)
n
i=1 of P ∈ Fd (non-

parametric class) and knowledge of Nσ (Gaussian measure N (0, σ2Id)).

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;Tℓ) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P ∗ Nσ) from n i.i.d. samples Sn,(Si)
n
i=1 of P ∈ Fd (non-

parametric class) and knowledge of Nσ (Gaussian measure N (0, σ2Id)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap η) is Ω
(

2d

ηd

)

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;Tℓ) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P ∗ Nσ) from n i.i.d. samples Sn,(Si)
n
i=1 of P ∈ Fd (non-

parametric class) and knowledge of Nσ (Gaussian measure N (0, σ2Id)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap η) is Ω
(

2d

ηd

)

Structured Estimator⋆: ĥ(Sn, σ) , h(P̂n ∗ Nσ), where P̂n = 1
n

n
∑

i=1
δSi

⋆ Efficient and parallelizable
7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;Tℓ) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P ∗ Nσ) from n i.i.d. samples Sn,(Si)
n
i=1 of P ∈ Fd (non-

parametric class) and knowledge of Nσ (Gaussian measure N (0, σ2Id)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap η) is Ω
(

2d

ηd

)

Structured Estimator⋆: ĥ(Sn, σ) , h(P̂n ∗ Nσ), where P̂n = 1
n

n
∑

i=1
δSi

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For F (SG)
d,K ,

{

P
∣

∣P is K-subgaussian in R
d
}

, d ≥ 1 and σ > 0, we have

sup
P ∈F

(SG)
d,K

ESn

∣

∣

∣h(P ∗ Nσ) − ĥ(Sn, σ)
∣

∣

∣ ≤ cd
σ,K · n− 1

2

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;Tℓ) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P ∗ Nσ) from n i.i.d. samples Sn,(Si)
n
i=1 of P ∈ Fd (non-

parametric class) and knowledge of Nσ (Gaussian measure N (0, σ2Id)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap η) is Ω
(

2d

ηd

)

Structured Estimator⋆: ĥ(Sn, σ) , h(P̂n ∗ Nσ), where P̂n = 1
n

n
∑

i=1
δSi

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For F (SG)
d,K ,

{

P
∣

∣P is K-subgaussian in R
d
}

, d ≥ 1 and σ > 0, we have

sup
P ∈F

(SG)
d,K

ESn

∣

∣

∣h(P ∗ Nσ) − ĥ(Sn, σ)
∣

∣

∣ ≤ cd
σ,K · n− 1

2

Optimality: ĥ(Sn, σ) attains sharp dependence on both n and d!
7/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:
X tanh(wX + b)

Sw,b

Z ∼ N (0, σ2)

T

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

3 3 3 3

S1,0

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

3 3 3 3

S1,0

⊛⊛⊛ Center & sharpen transition (⇐⇒ increase w and keep b = −2w)

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

3 3 3 3

S1,0 S5,−10

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

3 3 3 3

S1,0 S5,−10

✓ Correct classification performance

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information:

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

8/11

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)

T

10
0

10
2

10
4

10
6

Epoch

0

0.5

1

1.5

M
u
tu

a
l
in

fo
rm

a
ti
o
n

ln(3)

ln(2)

ln(4)

8/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple additional experiments

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

9/11

Circling Back to Deterministic DNNs

I(X; Tℓ) is constant/infinite =⇒ Doesn’t measure clustering

10/11

Circling Back to Deterministic DNNs

I(X; Tℓ) is constant/infinite =⇒ Doesn’t measure clustering

Reexamine Measurements: Computed I
(

X; Bin(Tℓ)
)

= H
(

Bin(Tℓ)
)

10/11

Circling Back to Deterministic DNNs

I(X; Tℓ) is constant/infinite =⇒ Doesn’t measure clustering

Reexamine Measurements: Computed I
(

X; Bin(Tℓ)
)

= H
(

Bin(Tℓ)
)

H
(

Bin(Tℓ)
)

measures clustering (maximized by uniform distribution)

10/11

Circling Back to Deterministic DNNs

I(X; Tℓ) is constant/infinite =⇒ Doesn’t measure clustering

Reexamine Measurements: Computed I
(

X; Bin(Tℓ)
)

= H
(

Bin(Tℓ)
)

H
(

Bin(Tℓ)
)

measures clustering (maximized by uniform distribution)

Test: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated in noisy DNNs⋆

⋆ When bin size chosen ∝ noise std.
10/11

Circling Back to Deterministic DNNs

I(X; Tℓ) is constant/infinite =⇒ Doesn’t measure clustering

Reexamine Measurements: Computed I
(

X; Bin(Tℓ)
)

= H
(

Bin(Tℓ)
)

H
(

Bin(Tℓ)
)

measures clustering (maximized by uniform distribution)

Test: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated in noisy DNNs⋆

=⇒ Past works not measuring MI but clustering (via binned-MI)!

10/11

Circling Back to Deterministic DNNs

I(X; Tℓ) is constant/infinite =⇒ Doesn’t measure clustering

Reexamine Measurements: Computed I
(

X; Bin(Tℓ)
)

= H
(

Bin(Tℓ)
)

H
(

Bin(Tℓ)
)

measures clustering (maximized by uniform distribution)

Test: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated in noisy DNNs⋆

=⇒ Past works not measuring MI but clustering (via binned-MI)!

By-Product Result:

10/11

Circling Back to Deterministic DNNs

I(X; Tℓ) is constant/infinite =⇒ Doesn’t measure clustering

Reexamine Measurements: Computed I
(

X; Bin(Tℓ)
)

= H
(

Bin(Tℓ)
)

H
(

Bin(Tℓ)
)

measures clustering (maximized by uniform distribution)

Test: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated in noisy DNNs⋆

=⇒ Past works not measuring MI but clustering (via binned-MI)!

By-Product Result:

Refute ‘compression (tight clustering) improves generalization’ claim

[Come see us at poster #96 for details]

10/11

Summary

Reexamined Information Bottleneck Compression:

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Optimal estimator (in n and d) for accurate MI estimation

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Optimal estimator (in n and d) for accurate MI estimation

◮ Clustering of learned representations is the source of compression

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Optimal estimator (in n and d) for accurate MI estimation

◮ Clustering of learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Optimal estimator (in n and d) for accurate MI estimation

◮ Clustering of learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

◮ Compression/clustering and generalization and not necessarily related

11/11

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Optimal estimator (in n and d) for accurate MI estimation

◮ Clustering of learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

◮ Compression/clustering and generalization and not necessarily related

Thank you!

11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

⊛⊛⊛ weight orthonormality regularization [Cisse et al.’17]
11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple additional experiments

11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

⊛⊛⊛ Know the distribution Nσ of Zℓ (noise injected by design)

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

⊛⊛⊛ Know the distribution Nσ of Zℓ (noise injected by design)

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

⊛⊛⊛ Know the distribution Nσ of Zℓ (noise injected by design)

⊛⊛⊛ Extremely complicated P =⇒ Treat as unknown

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Mutual Information Estimation in Noisy DNNs

Mutual Information: I(X; Tℓ) = h(Tℓ) − ∫

dPX(x)h(Tℓ|X = x)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ Nσ

⊛⊛⊛ Know the distribution Nσ of Zℓ (noise injected by design)

⊛⊛⊛ Extremely complicated P =⇒ Treat as unknown

⊛⊛⊛ Easily get i.i.d. samples from P via DNN forward pass

Noisy DNN: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

11/11

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ Nσ) via n i.i.d. samples Sn,(Si)
n
i=1 from unknown

P ∈ Fd (nonparametric class) and knowledge of Nσ (noise distribution).

11/11

Structured Estimator (with Implementation in Mind)

Nonparametric Class: Specified by DNN architecture (d = Tℓ ‘width’)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ Nσ) via n i.i.d. samples Sn,(Si)
n
i=1 from unknown

P ∈ Fd (nonparametric class) and knowledge of Nσ (noise distribution).

11/11

Structured Estimator (with Implementation in Mind)

Nonparametric Class: Specified by DNN architecture (d = Tℓ ‘width’)

Goal: Simple & parallelizable for efficient implementation

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ Nσ) via n i.i.d. samples Sn,(Si)
n
i=1 from unknown

P ∈ Fd (nonparametric class) and knowledge of Nσ (noise distribution).

11/11

Structured Estimator (with Implementation in Mind)

Nonparametric Class: Specified by DNN architecture (d = Tℓ ‘width’)

Goal: Simple & parallelizable for efficient implementation

Estimator: ĥ(Sn, σ) , h(P̂Sn ∗ Nσ), where P̂Sn , 1
n

n
∑

i=1
δSi

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ Nσ) via n i.i.d. samples Sn,(Si)
n
i=1 from unknown

P ∈ Fd (nonparametric class) and knowledge of Nσ (noise distribution).

11/11

Structured Estimator (with Implementation in Mind)

Nonparametric Class: Specified by DNN architecture (d = Tℓ ‘width’)

Goal: Simple & parallelizable for efficient implementation

Estimator: ĥ(Sn, σ) , h(P̂Sn ∗ Nσ), where P̂Sn , 1
n

n
∑

i=1
δSi

Plug-in: ĥ is plug-in est. for the functional Tσ(P) , h(P ∗ Nσ)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ Nσ) via n i.i.d. samples Sn,(Si)
n
i=1 from unknown

P ∈ Fd (nonparametric class) and knowledge of Nσ (noise distribution).

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.

Comments:

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.

Comments:

Explicit Expression: Enables concrete error bounds in simulations

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.

Comments:

Explicit Expression: Enables concrete error bounds in simulations

Minimax Rate Optimal: Attains parametric estimation rate O
(

n− 1
2
)

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.

Comments:

Explicit Expression: Enables concrete error bounds in simulations

Minimax Rate Optimal: Attains parametric estimation rate O
(

n− 1
2
)

Proof (initial step): Based on [Polyanskiy-Wu’16]

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ . W1(P ∗ Nσ, P̂Sn ∗ Nσ)

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any σ > 0, d ≥ 1, we have

sup
P ∈F

(SG)
d,K

E

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ ≤ Cσ,d,K · n− 1
2

where Cσ,d,K = Oσ,K(cd) for a constant c.

Comments:

Explicit Expression: Enables concrete error bounds in simulations

Minimax Rate Optimal: Attains parametric estimation rate O
(

n− 1
2
)

Proof (initial step): Based on [Polyanskiy-Wu’16]

∣

∣

∣h(P ∗ Nσ) − h(P̂Sn ∗ Nσ)
∣

∣

∣ . W1(P ∗ Nσ, P̂Sn ∗ Nσ)

=⇒ Analyze empirical 1-Wasserstein distance under Gaussian convolutions
11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d =⇒ i.i.d. Samples (Si)

n
i=1

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d =⇒ i.i.d. Samples (Si)

n
i=1

Empirical distribution P̂Sn , 1
n

n
∑

i=1
δSi

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d =⇒ i.i.d. Samples (Si)

n
i=1

Empirical distribution P̂Sn , 1
n

n
∑

i=1
δSi

=⇒ Dependence on (n, d) of EW1
(

P , P̂Sn

)

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d =⇒ i.i.d. Samples (Si)

n
i=1

Empirical distribution P̂Sn , 1
n

n
∑

i=1
δSi

=⇒ Dependence on (n, d) of EW1
(

P , P̂Sn

)

& n− 1
d

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d =⇒ i.i.d. Samples (Si)

n
i=1

Empirical distribution P̂Sn , 1
n

n
∑

i=1
δSi

=⇒ Dependence on (n, d) of EW1
(

P , P̂Sn

)

& n− 1
d

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d =⇒ i.i.d. Samples (Si)

n
i=1

Empirical distribution P̂Sn , 1
n

n
∑

i=1
δSi

=⇒ Dependence on (n, d) of EW1
(

P , P̂Sn

)

& n− 1
d

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any d, we have EW1
(

P ∗ Nσ, P̂Sn ∗ Nσ
) ≤ Oσ,d

(

n− 1
2
)

11/11

Empirical W1 & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R
d and p ≥ 1

Wp(P, Q) , inf
(

E‖X − Y ‖p)1/p

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Distribution P on R
d =⇒ i.i.d. Samples (Si)

n
i=1

Empirical distribution P̂Sn , 1
n

n
∑

i=1
δSi

=⇒ Dependence on (n, d) of EW1
(

P , P̂Sn

)

& n− 1
d

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any d, we have EW1
(

P ∗ Nσ, P̂Sn ∗ Nσ
) ≤ Oσ,d

(

n− 1
2
)

= Oσ
(

cdn− 1
2
)

11/11

Is Exponentiality in Dimension Necessary?

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any σ > 0, sufficiently large d and sufficiently small η > 0, we have

n⋆(η, σ, Fd) = Ω
(

2γ(σ)d

ηd

)

, where γ(σ)>0 is monotonically decreasing in σ.

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any σ > 0, sufficiently large d and sufficiently small η > 0, we have

n⋆(η, σ, Fd) = Ω
(

2γ(σ)d

ηd

)

, where γ(σ)>0 is monotonically decreasing in σ.

=⇒ O

(

cd

√
n

)

rate attained by the plugin estimator is sharp in n and d

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any σ > 0, sufficiently large d and sufficiently small η > 0, we have

n⋆(η, σ, Fd) = Ω
(

2γ(σ)d

ηd

)

, where γ(σ)>0 is monotonically decreasing in σ.

=⇒ O

(

cd

√
n

)

rate attained by the plugin estimator is sharp in n and d

Proof (main ideas):

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any σ > 0, sufficiently large d and sufficiently small η > 0, we have

n⋆(η, σ, Fd) = Ω
(

2γ(σ)d

ηd

)

, where γ(σ)>0 is monotonically decreasing in σ.

=⇒ O

(

cd

√
n

)

rate attained by the plugin estimator is sharp in n and d

Proof (main ideas):

Relate h(P ∗ Nσ) to Shannon entropy H(Q)

supp(Q) = peak-constrained AWGN capacity achieving codebook Cd

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any σ > 0, sufficiently large d and sufficiently small η > 0, we have

n⋆(η, σ, Fd) = Ω
(

2γ(σ)d

ηd

)

, where γ(σ)>0 is monotonically decreasing in σ.

=⇒ O

(

cd

√
n

)

rate attained by the plugin estimator is sharp in n and d

Proof (main ideas):

Relate h(P ∗ Nσ) to Shannon entropy H(Q)

supp(Q) = peak-constrained AWGN capacity achieving codebook Cd

H(Q) estimation sample complexity Ω
(

|Cd|
η log |Cd|

)

[Valiant-Valiant’10]

11/11

