Estimating Information Flow in Deep Neural Networks

Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kingsbury and Yury Polyanskiy

MIT, IBM Research, MIT-IBM Watson AI Lab

International Conference on Machine Learning

$$
\text { June 12th, } 2019
$$

Deep Learning - What's Under the Hood?

Deep Learning - What's Under the Hood?

- Lacking Theory: Macroscopic understanding of Deep Learning

Deep Learning - What's Under the Hood?

- Lacking Theory: Macroscopic understanding of Deep Learning
? What drives the evolution of internal representations?

Deep Learning - What's Under the Hood?

- Lacking Theory: Macroscopic understanding of Deep Learning
? What drives the evolution of internal representations?
? What are properties of learned representations?

Deep Learning - What's Under the Hood?

- Lacking Theory: Macroscopic understanding of Deep Learning
? What drives the evolution of internal representations?
? What are properties of learned representations?
? How do fully trained networks process information?

Deep Learning - What's Under the Hood?

- Lacking Theory: Macroscopic understanding of Deep Learning
? What drives the evolution of internal representations?
? What are properties of learned representations?
? How do fully trained networks process information?
- Attempts to Understand Effectiveness of DL:
- Structure of loss landscape
[Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]
- Wavelets and sparse coding
[Bruna-Mallat'13, Giryes et al.'16, Papyan et al.'16]
- Adversarial examples
[Szegedy et al.'14, Nguyen et al.'17, Liu et al.'16, Cisse et al.'16]
- Information Bottleneck Theory
[Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.'18]

Deep Learning - What's Under the Hood?

- Lacking Theory: Macroscopic understanding of Deep Learning
? What drives the evolution of internal representations?
? What are properties of learned representations?
? How do fully trained networks process information?
- Attempts to Understand Effectiveness of DL:
- Structure of loss landscape
[Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]
- Wavelets and sparse coding
[Bruna-Mallat'13, Giryes et al.'16, Papyan et al.'16]
- Adversarial examples
[Szegedy et al.'14, Nguyen et al.'17, Liu et al.'16, Cisse et al.'16]
- Information Bottleneck Theory
[Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.'18]

Deep Learning - What's Under the Hood?

- Lacking Theory: Macroscopic understanding of Deep Learning
? What drives the evolution of internal representations?
? What are properties of learned representations?
? How do fully trained networks process information?
- Attempts to Understand Effectiveness of DL:
- Structure of loss landscape
[Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]
- Wavelets and sparse coding
[Bruna-Mallat'13, Giryes et al.'16, Papyan et al.'16]
- Adversarial examples [Szegedy et al.'14, Nguyen et al.'17, Liu et al.'16, Cisse et al.'16]
- Information Bottleneck Theory
[Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.'18]
\star Goal: Mathematically analyze IB theory \& test 'Compression'

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $\quad P_{X, Y}$

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y} \Longrightarrow P_{X, Y} \cdot P_{T_{1}, \ldots, T_{L} \mid X}$

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y} \Longrightarrow P_{X, Y} \cdot P_{T_{1}, \ldots, T_{L} \mid X}$
- Information Plane: Evolution of $\left(I\left(X ; T_{\ell}\right), I\left(Y ; T_{\ell}\right)\right)$ during training

$$
\left[I(A ; B)=\mathrm{D}_{\mathrm{KL}}\left(P_{A, B} \| P_{A} \otimes P_{B}\right) \stackrel{\text { Discrete }}{=} \sum_{a, b} P_{A, B}(a, b) \log \frac{P_{A, B}(a, b)}{P_{A}(a) P_{B}(b)}\right]
$$

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

IB Theory Claim: Training comprises 2 phases

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

IB Theory Claim: Training comprises 2 phases
(1) Fitting: $I\left(Y ; T_{\ell}\right) \& I\left(X ; T_{\ell}\right)$ rise (short)

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

IB Theory Claim: Training comprises 2 phases
(1) Fitting: $I\left(Y ; T_{\ell}\right) \& I\left(X ; T_{\ell}\right)$ rise (short)
(2) Compression: $I\left(X ; T_{\ell}\right)$ slowly drops (long)

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Y	X	$T_{0}=X$	T_{1}	T_{2}	T_{3}
(Label)	(Feature/lmage)	(Input Layer)	(Hidden Layer 1)	(Hidden Layer 2)	(Hidden Layer 3)

Cat

Dog

IB Theory Claim: Training comprises 2 phases
(1) Fitting: $I\left(Y ; T_{\ell}\right) \& I\left(X ; T_{\ell}\right)$ rise (short)
(2) Compression: $I\left(X ; T_{\ell}\right)$ slowly drops (long)

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous $\left.X\right)$ or constant $H(X)$ (discrete X)

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous X) or constant $H(X)$ (discrete X)

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid) $\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous X) or constant $H(X)$ (discrete X)

Internal Rep. Space $\left(T_{\ell}=\tilde{f}_{\ell}(X)\right)$

$$
T_{\ell} \sim \operatorname{Unif}\left(\mathcal{T}_{\ell}\right)
$$

$$
\left|\mathcal{T}_{\ell}\right|=|\mathcal{X}|=3000
$$

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid) $\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous $\left.X\right)$ or constant $H(X)$ (discrete X)
- Past Works: Use binning-based proxy of $I\left(X ; T_{\ell}\right)$ (aka quantization)

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous $\left.X\right)$ or constant $H(X)$ (discrete X)
- Past Works: Use binning-based proxy of $I\left(X ; T_{\ell}\right)$ (aka quantization)
(3) For non-negligible bin size $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right) \neq I\left(X ; T_{\ell}\right)$

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous $\left.X\right)$ or constant $H(X)$ (discrete X)
- Past Works: Use binning-based proxy of $I\left(X ; T_{\ell}\right)$ (aka quantization)
(1) For non-negligible bin size $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right) \neq I\left(X ; T_{\ell}\right)$
(2) $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)$ highly sensitive to user-defined bin size:

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous X) or constant $H(X)$ (discrete X)
- Past Works: Use binning-based proxy of $I\left(X ; T_{\ell}\right)$ (aka quantization)
(1) For non-negligible bin size $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right) \neq I\left(X ; T_{\ell}\right)$
(2) $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)$ highly sensitive to user-defined bin size:

Vacuous Mutual Information \& Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is independent of the DNN parameters

- $I\left(X ; T_{\ell}\right)$ a.s. infinite (continuous X) or constant $H(X)$ (discrete X)
- Past Works: Use binning-based proxy of $I\left(X ; T_{\ell}\right)$ (aka quantization)
(1) For non-negligible bin size $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right) \neq I\left(X ; T_{\ell}\right)$
(2) $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)$ highly sensitive to user-defined bin size:

* Real Problem: Mismatch between $I\left(X ; T_{\ell}\right)$ measurement and model

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons' output

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons' output

- Formally: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons' output

- Formally: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right)$

$\Longrightarrow X \mapsto T_{\ell}$ is a parametrized channel (by DNN's parameters)

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons' output

- Formally: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right)$

$\Longrightarrow X \mapsto T_{\ell}$ is a parametrized channel (by DNN's parameters)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is a function of parameters!

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons' output

- Formally: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right)$

$\Longrightarrow X \mapsto T_{\ell}$ is a parametrized channel (by DNN's parameters)
$\Longrightarrow I\left(X ; T_{\ell}\right)$ is a function of parameters!
* Challenge: How to accurately track $I\left(X ; T_{\ell}\right)$?

High-Dim. \& Nonparametric Functional Estimation

High-Dim. \& Nonparametric Functional Estimation

Distill $I\left(X ; T_{\ell}\right)$ Estimation into Noisy Differential Entropy Estimation:
Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ from n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ of $P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$).

High-Dim. \& Nonparametric Functional Estimation

Distill $I\left(X ; T_{\ell}\right)$ Estimation into Noisy Differential Entropy Estimation:
Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ from n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ of $P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^{d}}{\eta d}\right)$

High-Dim. \& Nonparametric Functional Estimation

Distill $I\left(X ; T_{\ell}\right)$ Estimation into Noisy Differential Entropy Estimation:
Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ from n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ of $P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^{d}}{\eta d}\right)$
$\underline{\text { Structured Estimator*: }} \hat{h}\left(S^{n}, \sigma\right) \triangleq h\left(\hat{P}_{n} * \mathcal{N}_{\sigma}\right)$, where $\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$
\star Efficient and parallelizable

High-Dim. \& Nonparametric Functional Estimation

Distill $I\left(X ; T_{\ell}\right)$ Estimation into Noisy Differential Entropy Estimation:

Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ from n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ of $P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^{d}}{\eta d}\right)$
Structured Estimator*: $\hat{h}\left(S^{n}, \sigma\right) \triangleq h\left(\hat{P}_{n} * \mathcal{N}_{\sigma}\right)$, where $\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For $\mathcal{F}_{d, K}^{(\mathrm{SG})} \triangleq\left\{P \mid P\right.$ is K-subgaussian in $\left.\mathbb{R}^{d}\right\}, d \geq 1$ and $\sigma>0$, we have

$$
\sup _{P \in \mathcal{F}_{d, K}^{(\mathrm{SG})}} \mathbb{E}_{S^{n}}\left|h\left(P * \mathcal{N}_{\sigma}\right)-\hat{h}\left(S^{n}, \sigma\right)\right| \leq c_{\sigma, K}^{d} \cdot n^{-\frac{1}{2}}
$$

High-Dim. \& Nonparametric Functional Estimation

Distill $I\left(X ; T_{\ell}\right)$ Estimation into Noisy Differential Entropy Estimation:

Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ from n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ of $P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (Gaussian measure $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$).

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^{d}}{\eta d}\right)$
Structured Estimator*: $\hat{h}\left(S^{n}, \sigma\right) \triangleq h\left(\hat{P}_{n} * \mathcal{N}_{\sigma}\right)$, where $\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For $\mathcal{F}_{d, K}^{(\mathrm{SG})} \triangleq\left\{P \mid P\right.$ is K-subgaussian in $\left.\mathbb{R}^{d}\right\}, d \geq 1$ and $\sigma>0$, we have

$$
\sup _{P \in \mathcal{F}_{d, K}^{(\mathrm{SG})}} \mathbb{E}_{S^{n}}\left|h\left(P * \mathcal{N}_{\sigma}\right)-\hat{h}\left(S^{n}, \sigma\right)\right| \leq c_{\sigma, K}^{d} \cdot n^{-\frac{1}{2}}
$$

Optimality: $\hat{h}\left(S^{n}, \sigma\right)$ attains sharp dependence on both n and d !

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

* Center \& sharpen transition $(\Longleftrightarrow$ increase w and keep $b=-2 w)$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

\checkmark Correct classification performance

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$
- Mutual Information:

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

$$
Z \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

$$
\mathcal{X}_{y=-1} \triangleq\{-3,-1,1\}, \mathcal{X}_{y=1} \triangleq\{3\}
$$

- Mutual Information: $I(X ; T)=I\left(S_{w, b} ; S_{w, b}+Z\right)$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

$$
\mathcal{X}_{y=-1} \triangleq\{-3,-1,1\}, \mathcal{X}_{y=1} \triangleq\{3\}
$$

- Mutual Information: $I(X ; T)=I\left(S_{w, b} ; S_{w, b}+Z\right)$
$\Longrightarrow I(X ; T)$ is \# bits (nats) transmittable over AWGN with symbols $\mathcal{S}_{w, b} \triangleq\{\tanh (-3 w+b), \tanh (-w+b), \tanh (w+b), \tanh (3 w+b)\}$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

$$
\mathcal{X}_{y=-1} \triangleq\{-3,-1,1\}, \mathcal{X}_{y=1} \triangleq\{3\}
$$

- Mutual Information: $I(X ; T)=I\left(S_{w, b} ; S_{w, b}+Z\right)$
$\Longrightarrow I(X ; T)$ is \# bits (nats) transmittable over AWGN with symbols $\mathcal{S}_{w, b} \triangleq\{\tanh (-3 w+b), \tanh (-w+b), \tanh (w+b), \tanh (3 w+b)\} \longrightarrow\{ \pm 1\}$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$

$$
\xrightarrow[\{3\}]{X \longrightarrow \tanh (w X+b)} \xrightarrow{S_{w, b}} \bigoplus_{Z \sim \mathcal{N}\left(0, \sigma^{2}\right)}^{T} \xrightarrow{T}
$$

$$
\mathcal{X}_{y=-1} \triangleq\{-3,-1,1\}, \mathcal{X}_{y=1} \triangleq\{3\}
$$

- Mutual Information: $I(X ; T)=I\left(S_{w, b} ; S_{w, b}+Z\right)$
$\Longrightarrow I(X ; T)$ is \# bits (nats) transmittable over AWGN with symbols $\mathcal{S}_{w, b} \triangleq\{\tanh (-3 w+b), \tanh (-w+b), \tanh (w+b), \tanh (3 w+b)\} \longrightarrow\{ \pm 1\}$

$I\left(X ; T_{\ell}\right)$ Dynamics - Illustrative Minimal Example

Single Neuron Classification:

- Input: $X \sim \operatorname{Unif}\{ \pm 1, \pm 3\}$
- Mutual Information: $I(X ; T)=I\left(S_{w, b} ; S_{w, b}+Z\right)$
$\Longrightarrow I(X ; T)$ is \# bits (nats) transmittable over AWGN with symbols $\mathcal{S}_{w, b} \triangleq\{\tanh (-3 w+b), \tanh (-w+b), \tanh (w+b), \tanh (3 w+b)\} \longrightarrow\{ \pm 1\}$

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments
\Longrightarrow Compression of $I\left(X ; T_{\ell}\right)$ driven by clustering of representations

Circling Back to Deterministic DNNs

$I\left(X ; T_{\ell}\right)$ is constant/infinite \Longrightarrow Doesn't measure clustering

Circling Back to Deterministic DNNs

$$
I\left(X ; T_{\ell}\right) \text { is constant/infinite } \Longrightarrow \text { Doesn't measure clustering }
$$

Reexamine Measurements: Computed $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)=H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$

Circling Back to Deterministic DNNs

$$
I\left(X ; T_{\ell}\right) \text { is constant/infinite } \Longrightarrow \text { Doesn't measure clustering }
$$

Reexamine Measurements: Computed $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)=H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$

- $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ measures clustering (maximized by uniform distribution)

Circling Back to Deterministic DNNs

$$
I\left(X ; T_{\ell}\right) \text { is constant/infinite } \Longrightarrow \text { Doesn't measure clustering }
$$

Reexamine Measurements: Computed $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)=H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$

- $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ measures clustering (maximized by uniform distribution)

Test: $I\left(X ; T_{\ell}\right)$ and $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ highly correlated in noisy DNNs*

\star When bin size chosen \propto noise std.

Circling Back to Deterministic DNNs

$$
I\left(X ; T_{\ell}\right) \text { is constant/infinite } \Longrightarrow \text { Doesn't measure clustering }
$$

Reexamine Measurements: Computed $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)=H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$

- $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ measures clustering (maximized by uniform distribution)

Test: $I\left(X ; T_{\ell}\right)$ and $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ highly correlated in noisy DNNs*
\Longrightarrow Past works not measuring MI but clustering (via binned-MI)!

Circling Back to Deterministic DNNs

$$
I\left(X ; T_{\ell}\right) \text { is constant/infinite } \Longrightarrow \text { Doesn't measure clustering }
$$

Reexamine Measurements: Computed $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)=H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$

- $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ measures clustering (maximized by uniform distribution)

Test: $I\left(X ; T_{\ell}\right)$ and $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ highly correlated in noisy DNNs*
\Longrightarrow Past works not measuring MI but clustering (via binned-MI)!
By-Product Result:

Circling Back to Deterministic DNNs

$$
I\left(X ; T_{\ell}\right) \text { is constant/infinite } \Longrightarrow \text { Doesn't measure clustering }
$$

Reexamine Measurements: Computed $I\left(X ; \operatorname{Bin}\left(T_{\ell}\right)\right)=H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$

- $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ measures clustering (maximized by uniform distribution)

Test: $I\left(X ; T_{\ell}\right)$ and $H\left(\operatorname{Bin}\left(T_{\ell}\right)\right)$ highly correlated in noisy DNNs*
\Longrightarrow Past works not measuring MI but clustering (via binned-MI)!

By-Product Result:

- Refute 'compression (tight clustering) improves generalization' claim
[Come see us at poster \#96 for details]

Summary

- Reexamined Information Bottleneck Compression:

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) $I(X ; T)$ dynamics during training

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) $I(X ; T)$ dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) $I(X ; T)$ dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
- Optimal estimator (in n and d) for accurate MI estimation

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) $I(X ; T)$ dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
- Optimal estimator (in n and d) for accurate MI estimation
- Clustering of learned representations is the source of compression

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) $I(X ; T)$ dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
- Optimal estimator (in n and d) for accurate MI estimation
- Clustering of learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) $I(X ; T)$ dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
- Optimal estimator (in n and d) for accurate MI estimation
- Clustering of learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering
- Compression/clustering and generalization and not necessarily related

Summary

- Reexamined Information Bottleneck Compression:
- $I(X ; T)$ fluctuations in det. DNNs are theoretically impossible
- Yet, past works presented (binned) $I(X ; T)$ dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
- Optimal estimator (in n and d) for accurate MI estimation
- Clustering of learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering
- Compression/clustering and generalization and not necessarily related

Thank you!

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

* weight orthonormality regularization [Cisse et al.'17]

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple additional experiments
\Longrightarrow Compression of $I\left(X ; T_{\ell}\right)$ driven by clustering of representations

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $\quad I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$
- Structure: $\quad S_{\ell} \perp Z_{\ell} \Longrightarrow T_{\ell}=S_{\ell}+Z_{\ell} \sim P * \mathcal{N}_{\sigma}$

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$
- Structure: $\quad S_{\ell} \perp Z_{\ell} \Longrightarrow T_{\ell}=S_{\ell}+Z_{\ell} \sim P * \mathcal{N}_{\sigma}$

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $\quad I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$
- Structure: $S_{\ell} \perp Z_{\ell} \Longrightarrow T_{\ell}=S_{\ell}+Z_{\ell} \sim P * \mathcal{N}_{\sigma}$

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $\quad I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$
- Structure: $\quad S_{\ell} \perp Z_{\ell} \Longrightarrow T_{\ell}=S_{\ell}+Z_{\ell} \sim P * \mathcal{N}_{\sigma}$
\circledast Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$
- Structure: $\quad S_{\ell} \perp Z_{\ell} \Longrightarrow T_{\ell}=S_{\ell}+Z_{\ell} \sim P * \mathcal{N}_{\sigma}$
* Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$
- Structure: $\quad S_{\ell} \perp Z_{\ell} \Longrightarrow T_{\ell}=S_{\ell}+Z_{\ell} \sim P * \mathcal{N}_{\sigma}$
* Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)
* Extremely complicated $P \Longrightarrow$ Treat as unknown

Mutual Information Estimation in Noisy DNNs

Noisy DNN: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

- Mutual Information: $I\left(X ; T_{\ell}\right)=h\left(T_{\ell}\right)-\int \mathrm{d} P_{X}(x) h\left(T_{\ell} \mid X=x\right)$
- Structure: $\quad S_{\ell} \perp Z_{\ell} \Longrightarrow T_{\ell}=S_{\ell}+Z_{\ell} \sim P * \mathcal{N}_{\sigma}$
* Know the distribution \mathcal{N}_{σ} of Z_{ℓ} (noise injected by design)
* Extremely complicated $P \Longrightarrow$ Treat as unknown
* Easily get i.i.d. samples from P via DNN forward pass

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ via n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ from unknown
$P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (noise distribution).

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ via n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ from unknown
$P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (noise distribution).

Nonparametric Class: Specified by DNN architecture ($d=T_{\ell}$ 'width')

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ via n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ from unknown
$P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (noise distribution).

Nonparametric Class: Specified by DNN architecture ($d=T_{\ell}$ 'width')

Goal: Simple \& parallelizable for efficient implementation

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ via n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ from unknown
$P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (noise distribution).

Nonparametric Class: Specified by DNN architecture ($d=T_{\ell}$ 'width')

Goal: Simple \& parallelizable for efficient implementation

Estimator: $\hat{h}\left(S^{n}, \sigma\right) \triangleq h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)$, where $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h\left(P * \mathcal{N}_{\sigma}\right)$ via n i.i.d. samples $S^{n} \triangleq\left(S_{i}\right)_{i=1}^{n}$ from unknown
$P \in \mathcal{F}_{d}$ (nonparametric class) and knowledge of \mathcal{N}_{σ} (noise distribution).

Nonparametric Class: Specified by DNN architecture ($d=T_{\ell}$ 'width')

Goal: Simple \& parallelizable for efficient implementation

Estimator: $\hat{h}\left(S^{n}, \sigma\right) \triangleq h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)$, where $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$

- Plug-in: \hat{h} is plug-in est. for the functional $\mathrm{T}_{\sigma}(P) \triangleq h\left(P * \mathcal{N}_{\sigma}\right)$

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any $\sigma>0, d \geq 1$, we have

$$
\sup _{P \in \mathcal{F}_{d, K}^{\text {(sG) }}} \mathbb{E}\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \leq C_{\sigma, d, K} \cdot n^{-\frac{1}{2}}
$$

where $C_{\sigma, d, K}=O_{\sigma, K}\left(c^{d}\right)$ for a constant c.

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any $\sigma>0, d \geq 1$, we have

$$
\sup _{P \in \mathcal{F}_{d, K}^{(\mathrm{SS})}} \mathbb{E}\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \leq C_{\sigma, d, K} \cdot n^{-\frac{1}{2}}
$$

where $C_{\sigma, d, K}=O_{\sigma, K}\left(c^{d}\right)$ for a constant c.

Comments:

Structured Estimator - Convergence Rate

$$
\begin{aligned}
& \text { Theorem (ZG-Greenewald-Weed-Polyanskiy'19) } \\
& \text { For any } \sigma>0, d \geq 1 \text {, we have } \\
& \qquad \sup _{P \in \mathcal{F}_{d, K}^{\mathrm{SG})}} \mathbb{E}\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \leq C_{\sigma, d, K} \cdot n^{-\frac{1}{2}} \\
& \text { where } C_{\sigma, d, K}=O_{\sigma, K}\left(c^{d}\right) \text { for a constant } c \text {. }
\end{aligned}
$$

Comments:

- Explicit Expression: Enables concrete error bounds in simulations

Structured Estimator - Convergence Rate

$$
\begin{aligned}
& \text { Theorem (ZG-Greenewald-Weed-Polyanskiy'19) } \\
& \text { For any } \sigma>0, d \geq 1 \text {, we have } \\
& \qquad \sup _{P \in \mathcal{F}_{d, K}^{\text {(SG) }}} \mathbb{E}\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \leq C_{\sigma, d, K} \cdot n^{-\frac{1}{2}} \\
& \text { where } C_{\sigma, d, K}=O_{\sigma, K}\left(c^{d}\right) \text { for a constant } c \text {. }
\end{aligned}
$$

Comments:

- Explicit Expression: Enables concrete error bounds in simulations
- Minimax Rate Optimal: Attains parametric estimation rate $O\left(n^{-\frac{1}{2}}\right)$

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any $\sigma>0, d \geq 1$, we have

$$
\sup _{P \in \mathcal{F}_{d, K}^{\text {(sG) }}} \mathbb{E}\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \leq C_{\sigma, d, K} \cdot n^{-\frac{1}{2}}
$$

where $C_{\sigma, d, K}=O_{\sigma, K}\left(c^{d}\right)$ for a constant c.

Comments:

- Explicit Expression: Enables concrete error bounds in simulations
- Minimax Rate Optimal: Attains parametric estimation rate $O\left(n^{-\frac{1}{2}}\right)$

Proof (initial step): Based on [Polyanskiy-Wu'16]

$$
\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \lesssim W_{1}\left(P * \mathcal{N}_{\sigma}, \hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)
$$

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy'19)

For any $\sigma>0, d \geq 1$, we have

$$
\sup _{P \in \mathcal{F}_{d, K}^{\text {(SG) }}} \mathbb{E}\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \leq C_{\sigma, d, K} \cdot n^{-\frac{1}{2}}
$$

where $C_{\sigma, d, K}=O_{\sigma, K}\left(c^{d}\right)$ for a constant c.

Comments:

- Explicit Expression: Enables concrete error bounds in simulations
- Minimax Rate Optimal: Attains parametric estimation rate $O\left(n^{-\frac{1}{2}}\right)$

Proof (initial step): Based on [Polyanskiy-Wu'16]

$$
\left|h\left(P * \mathcal{N}_{\sigma}\right)-h\left(\hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)\right| \lesssim W_{1}\left(P * \mathcal{N}_{\sigma}, \hat{P}_{S^{n}} * \mathcal{N}_{\sigma}\right)
$$

\Longrightarrow Analyze empirical 1-Wasserstein distance under Gaussian convolutions

Empirical W_{1} \& The Magic of Gaussian Convolution

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical W_{1} \& The Magic of Gaussian Convolution

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

Empirical W_{1} \& The Magic of Gaussian Convolution

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on \mathbb{R}^{d}

Empirical W_{1} \& The Magic of Gaussian Convolution

$\underline{p-W a s s e r s t e i n ~ D i s t a n c e: ~ F o r ~ t w o ~ d i s t r i b u t i o n s ~} P$ and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(S_{i}\right)_{i=1}^{n}$

Empirical W_{1} \& The Magic of Gaussian Convolution

$\underline{p-W a s s e r s t e i n ~ D i s t a n c e: ~ F o r ~ t w o ~ d i s t r i b u t i o n s ~} P$ and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(S_{i}\right)_{i=1}^{n}$
- Empirical distribution $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$

Empirical W_{1} \& The Magic of Gaussian Convolution

$\underline{p-W a s s e r s t e i n ~ D i s t a n c e: ~ F o r ~ t w o ~ d i s t r i b u t i o n s ~} P$ and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(S_{i}\right)_{i=1}^{n}$
- Empirical distribution $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$
\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \hat{P}_{S^{n}}\right)$

Empirical W_{1} \& The Magic of Gaussian Convolution

$\underline{p-W a s s e r s t e i n ~ D i s t a n c e: ~ F o r ~ t w o ~ d i s t r i b u t i o n s ~} P$ and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(S_{i}\right)_{i=1}^{n}$
- Empirical distribution $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$
\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \hat{P}_{S^{n}}\right) \gtrsim n^{-\frac{1}{d}}$

Empirical W_{1} \& The Magic of Gaussian Convolution

$\underline{p-W a s s e r s t e i n ~ D i s t a n c e: ~ F o r ~ t w o ~ d i s t r i b u t i o n s ~} P$ and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(S_{i}\right)_{i=1}^{n}$
- Empirical distribution $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$
\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \hat{P}_{S^{n}}\right) \gtrsim n^{-\frac{1}{d}}$

Empirical W_{1} \& The Magic of Gaussian Convolution

$\underline{p-W a s s e r s t e i n ~ D i s t a n c e: ~ F o r ~ t w o ~ d i s t r i b u t i o n s ~} P$ and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(S_{i}\right)_{i=1}^{n}$
- Empirical distribution $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$
\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \hat{P}_{S^{n}}\right) \gtrsim n^{-\frac{1}{d}}$

Empirical W_{1} \& The Magic of Gaussian Convolution

$\underline{p-W a s s e r s t e i n ~ D i s t a n c e: ~ F o r ~ t w o ~ d i s t r i b u t i o n s ~} P$ and Q on \mathbb{R}^{d} and $p \geq 1$

$$
W_{p}(P, Q) \triangleq \inf \left(\mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- Distribution P on $\mathbb{R}^{d} \Longrightarrow$ i.i.d. Samples $\left(S_{i}\right)_{i=1}^{n}$
- Empirical distribution $\hat{P}_{S^{n}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{S_{i}}$
\Longrightarrow Dependence on (n, d) of $\mathbb{E} W_{1}\left(P, \hat{P}_{S^{n}}\right) \gtrsim n^{-\frac{1}{d}}$

Is Exponentiality in Dimension Necessary?

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}\left(\eta, \sigma, \mathcal{F}_{d}\right)=\Omega\left(\frac{2^{\gamma(\sigma) d}}{\eta d}\right)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ.

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}\left(\eta, \sigma, \mathcal{F}_{d}\right)=\Omega\left(\frac{2^{\gamma(\sigma) d}}{\eta d}\right)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ.
$\Longrightarrow O\left(\frac{c^{d}}{\sqrt{n}}\right)$ rate attained by the plugin estimator is sharp in n and d

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}\left(\eta, \sigma, \mathcal{F}_{d}\right)=\Omega\left(\frac{2^{\gamma(\sigma) d}}{\eta d}\right)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ.
$\Longrightarrow O\left(\frac{c^{d}}{\sqrt{n}}\right)$ rate attained by the plugin estimator is sharp in n and d
$\underline{\text { Proof (main ideas): }}$

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}\left(\eta, \sigma, \mathcal{F}_{d}\right)=\Omega\left(\frac{2^{\gamma(\sigma) d}}{\eta d}\right)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ.
$\Longrightarrow O\left(\frac{c^{d}}{\sqrt{n}}\right)$ rate attained by the plugin estimator is sharp in n and d

Proof (main ideas):

- Relate $h\left(P * \mathcal{N}_{\sigma}\right)$ to Shannon entropy $H(Q)$

$$
\operatorname{supp}(Q)=\text { peak-constrained AWGN capacity achieving codebook } \mathcal{C}_{d}
$$

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}\left(\eta, \sigma, \mathcal{F}_{d}\right)=\Omega\left(\frac{2^{\gamma(\sigma) d}}{\eta d}\right)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ.
$\Longrightarrow O\left(\frac{c^{d}}{\sqrt{n}}\right)$ rate attained by the plugin estimator is sharp in n and d

Proof (main ideas):

- Relate $h\left(P * \mathcal{N}_{\sigma}\right)$ to Shannon entropy $H(Q)$
$\operatorname{supp}(Q)=$ peak-constrained AWGN capacity achieving codebook \mathcal{C}_{d}
- $H(Q)$ estimation sample complexity $\Omega\left(\frac{\left|\mathcal{C}_{d}\right|}{\eta \log \left|\mathcal{C}_{d}\right|}\right)$ [Valiant-Valiant'10]

