On the Impact of the Activation Function on Deep Neural Networks Training

Soufiane Hayou

University of Oxford

soufiane.hayou@stats.ox.ac.uk

Neural Networks as Gaussian Processes

Limit of large networks

2 Information Propagation

- Depth Scales
- Edge of Chaos
- Impact of smoothness

3 Experiments

.∋...>

Consider a fully connected feed-forward neural network of depth *L*, widths $(N_l)_{1 \le l \le L}$, weights $W_{ij}^{l} \stackrel{iid}{\sim} \mathcal{N}(0, \frac{\sigma_w^2}{N_{l-1}})$ and bias $B_i^{l} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_b^2)$ For some input $a \in \mathbb{R}^d$, the propagation of this input through the network is given by

$$y_i^1(a) = \sum_{j=1}^d W_{ij}^1 a_j + B_i^1$$

$$y_i^l(a) = \sum_{j=1}^{N_{l-1}} W_{ij}^l \phi(y_j^{l-1}(a)) + B_i^l, \quad \text{for } l \ge 2.$$

• When N_{l-1} is large, $y_i^l(a)$ are iid centred Gaussian variables. By induction, this is true for all *l*.

ヨト イヨト

- When N_{l-1} is large, $y_i^l(a)$ are iid centred Gaussian variables. By induction, this is true for all *l*.
- Stronger result : when N_I = +∞ for all I (recursively), y^I_i(.) are independent (across i) centred Gaussian processes. (first proposed by Neal [1995] in the single layer case and has been recently extended to the multiple layer case by Lee et al. [2018] and Matthews et al. [2018])

For two inputs *a*, *b*, let q'(a) be the variance of $y'_1(a)$ and c'_{ab} the correlation of $y'_1(a)$ and $y'_1(b)$.

- Variance propagation : $q^{l} = F(q^{l-1})$ where $F(x) = \sigma_{b}^{2} + \sigma_{w}^{2} \mathbb{E}[\phi(\sqrt{x}Z)^{2}]$, $Z \sim \mathcal{N}(0,1)$
- Correlation propagation : $c^{l+1} = f_l(c^l)$ where $f_l(x) = \frac{\sigma_b^2 + \sigma_w^2 \mathbb{E}[\phi(\sqrt{q_a^l}Z_1)\phi(\sqrt{q_b^l}(xZ_1 + \sqrt{1 - x^2}Z_2))]}{\sqrt{q_a^l}\sqrt{q_b^l}}$

(人間) とうき くうとう う

Depth scales

Schoenholz et al. [2017] established the existence of $c \in [0, 1]$ such that $|c_{ab}^{l} - c| \sim e^{-l/\epsilon_{c}}$ where $\epsilon_{c} = -\log(\chi)$ and $\chi = \sigma_{w}^{2}\mathbb{E}[\phi'(\sqrt{q}Z)]$ (q is the limiting variance). The equation $\chi_{1} = 1$ corresponds to an infinite depth scale of the correlation. It is called the edge of chaos as it separates two phases :

イロト 不得下 イヨト イヨト 二日

Schoenholz et al. [2017] established the existence of $c \in [0, 1]$ such that $|c_{ab}^{l} - c| \sim e^{-l/\epsilon_{c}}$ where $\epsilon_{c} = -\log(\chi)$ and $\chi = \sigma_{w}^{2}\mathbb{E}[\phi'(\sqrt{q}Z)]$ (q is the limiting variance). The equation $\chi_{1} = 1$ corresponds to an infinite depth scale of the correlation. It is called the edge of chaos as it separates two phases :

• Ordered phase where $\chi_1 < 1$ (c = 1): the correlation converges (exponentially) to 1. In this case, two different inputs will have the same output.

イロト 不得下 イヨト イヨト 二日

Schoenholz et al. [2017] established the existence of $c \in [0, 1]$ such that $|c_{ab}^{l} - c| \sim e^{-l/\epsilon_{c}}$ where $\epsilon_{c} = -\log(\chi)$ and $\chi = \sigma_{w}^{2}\mathbb{E}[\phi'(\sqrt{q}Z)]$ (q is the limiting variance). The equation $\chi_{1} = 1$ corresponds to an infinite depth scale of the correlation. It is called the edge of chaos as it separates two phases :

- Ordered phase where $\chi_1 < 1$ (c = 1): the correlation converges (exponentially) to 1. In this case, two different inputs will have the same output.
- Chaotic phase where $\chi_1 > 1$ (c < 1): the correlation converges (exponentially) to some value c < 1. In this case, very close inputs will have very different outputs (the output function is discontinuous everywhere).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Ordered phase

Figure: Output of a 300x20 Tanh network with $(\sigma_b, \sigma_w) = (1, 1)$ (Ordered phase)

æ

イロト イヨト イヨト イヨト

Chaotic phase

Figure: A draw of the output of a 300x20 Tanh network with $(\sigma_b, \sigma_w) = (0.3, 2)$ (chaotic phase)

Soufiane Hayou (OxCSML)

8 / 16

Definition

For $(\sigma_b, \sigma_w) \in D_{\phi, var}$, let q be the limiting variance. The Edge of Chaos, hereafter EOC, is the set of values of (σ_b, σ_w) satisfying $\chi_1 = \sigma_w^2 \mathbb{E}[\phi'(\sqrt{q}Z)^2] = 1.$

- Having $\chi_1 = 1$ is linked to an infinite depth scale \rightarrow Sub-exponential convergence rate for the correlation
- For ReLU, the EOC = $\{(0, \sqrt{2})\}$. This coincides with the recommendation of He et al. [2015]

Proposition 1 : EOC acts as Residual connections

Consider a ReLU network with parameters $(\sigma_b^2, \sigma_w^2) = (0, 2) \in EOC$ and let c_{ab}^l be the corresponding correlation. Consider also a ReLU network with simple residual connections given by

$$\overline{y}_i^{l}(a) = \overline{y}_i^{l-1}(a) + \sum_{j=1}^{N_{l-1}} \overline{W}_{ij}^{l} \phi(\overline{y}_j^{l-1}(a)) + \overline{B}_i^{l}$$

where $\overline{W}_{ij}^{l} \stackrel{iid}{\sim} \mathcal{N}(0, \frac{\overline{\sigma}_{w}^{2}}{N_{l-1}})$ and $\overline{B}_{i}^{l} \stackrel{iid}{\sim} \mathcal{N}(0, \overline{\sigma}_{b}^{2})$. Let \overline{c}_{ab}^{l} be the corresponding correlation. Then, by taking $\overline{\sigma}_{w} > 0$ and $\overline{\sigma}_{b} = 0$, there exists a constant $\gamma > 0$ such that

$$1-c_{ab}^{\,\prime}\sim\gamma(1-\overline{c}_{ab}^{\,\prime})\simrac{9\pi^2}{2l^2}~~{
m as}~~l
ightarrow\infty.$$

(日) (周) (三) (三)

$\mathsf{Class}\ \mathcal{A}$

Let $\phi \in \mathcal{D}_g^2$. We say that ϕ is in \mathcal{A} if there exists $n \ge 1$, a partition $(S_i)_{1 \le i \le n}$ of \mathbb{R} and $g_1, g_2, ..., g_n \in \mathcal{C}_g^2$ such that $\phi^{(2)} = \sum_{i=1}^n \mathbb{1}_{S_i} g_i$.

Proposition 3 : Convergence rate for smooth Activation functions

Let $\phi \in \mathcal{A}$ such that ϕ non-linear (i.e. $\phi^{(2)}$ is non-identically zero). Then, on the EOC, we have $1 - c^{l} \sim \frac{\beta_{q}}{I}$ where $\beta_{q} = \frac{2\mathbb{E}[\phi'(\sqrt{q}Z)^{2}]}{q\mathbb{E}[\phi''(\sqrt{q}Z)^{2}]}$.

- Example : Tanh, Swish, ELU (with $\alpha = 1$) ...
- The non-smoothness of ReLU-like Activations makes the convergence rate worse on the EOC

イロト イ理ト イヨト イヨト

Impact of Smoothness

Figure: Impact of the smoothness of the activation function on the convergence of the correlation on the EOC. The convergence rate for ReLU is $\mathcal{O}(1/\ell^2)$ and $\mathcal{O}(1/\ell)$ for ELU and Tanh.

Experiments : Impact of Initializtion on the EOC

Figure: 100 epochs of the training curve (test accuracy) for different activation functions for depth 200 and width 300 using SGD. The red curves correspond to the EOC, the green ones correspond to an ordered phase, and the blue curves corresponds to an Initialization on the EOC plus a Batch Normalization after each layer. Upper figures show the test accuracies with respect to the epochs while lower figures show the accuracies with respect to time.

Soufiane Hayou (OxCSML)

University of Oxford

Table: Test accuracies for width 300 and depth 200 with different activations onMNIST and CIFAR10 after 100 epochs using SGD

MNIST	EOC	EOC + BN	Ord Phase
RELU ELU Tanh S-Softplus	$\begin{array}{c} \textbf{93.57}{\pm} \ \textbf{0.18} \\ \textbf{97.62}{\pm} \ \textbf{0.21} \\ \textbf{97.20}{\pm} \ \textbf{0.3} \\ 10.32{\pm} \ 0.41 \end{array}$	$\begin{array}{c} 93.11 \pm \ 0.21 \\ 93.41 \pm \ 0.3 \\ 10.74 \pm \ 0.1 \\ 9.92 \pm \ 0.12 \end{array}$	$\begin{array}{c} 10.09 \pm \ 0.61 \\ 10.14 \pm \ 0.51 \\ 10.02 \pm \ 0.13 \\ 10.09 \pm \ 0.53 \end{array}$
CIFAR10	EOC	EOC + BN	Ord Phase
RELU ELU Tanh S-Softplus	$\begin{array}{c} \textbf{36.55} \pm \ \textbf{1.15} \\ \textbf{45.76} \pm \ \textbf{0.91} \\ \textbf{44.11} \pm \ \textbf{1.02} \\ 10.13 \pm \ 0.11 \end{array}$	35.91 ± 1.52 44.12 ± 0.93 10.15 ± 0.85 9.81 ± 0.63	9.91 ± 0.93 10.11 ± 0.65 9.82 ± 0.88 10.05 ± 0.71

Table: Test accuracies for width 300 and depth 200 with different activations on MNIST and CIFAR10 using SGD

MNIST	Еросн 10	Еросн 50	Еросн 100
ReLU ELU Tanh	$\begin{array}{c} 66.76 \pm \ 1.95 \\ \textbf{96.09} \pm \ \textbf{1.55} \\ 89.75 \pm \ 1.01 \end{array}$	$\begin{array}{c} 88.62 \pm \ 0.61 \\ \textbf{97.21} \pm \ \textbf{0.31} \\ 96.51 \pm \ 0.51 \end{array}$	$\begin{array}{c} 93.57 \pm \ 0.18 \\ \textbf{97.62} \pm \ \textbf{0.21} \\ 97.20 \pm \ 0.3 \end{array}$
	Ероси 10	Еросн 50	Еросн 100
RELU ELU TANH	$\begin{array}{c} 26.46 \pm 1.68 \\ \textbf{35.95} \pm \textbf{1.83} \\ 34.12 \pm 1.23 \end{array}$	$\begin{array}{c} 33.74 \pm \ 1.21 \\ \textbf{45.55} \pm \ \textbf{0.91} \\ 43.47 \pm \ 1.12 \end{array}$	$\begin{array}{c} 36.55 \pm 1.15 \\ \textbf{47.76} \pm \textbf{0.91} \\ 44.11 \pm 1.02 \end{array}$

(日) (周) (三) (三)

- R.M. Neal. Bayesian learning for neural networks. *Springer Science & Business Media*, 118, 1995.
- J. Lee, Y. Bahri, R. Novak, S.S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural networks as gaussian processes. 6th International Conference on Learning Representations, 2018.
- A.G. Matthews, J. Hron, M. Rowland, R.E. Turner, and Z. Ghahramani. Gaussian process behaviour in wide deep neural networks. *6th International Conference on Learning Representations*, 2018.
- S.S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information propagation. *5th International Conference on Learning Representations*, 2017.
- K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. *ICCV*, 2015.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >