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Random Neural Networks

Consider a fully connected feed-forward neural network of depth L, widths

(Nl)1≤l≤L, weights W l
ij

iid∼ N (0, σ2
w

Nl−1
) and bias B l

i
iid∼ N (0, σ2

b)

For some input a ∈ Rd , the propagation of this input through the network
is given by

y1
i (a) =

d∑
j=1

W 1
ij aj + B1

i

y li (a) =

Nl−1∑
j=1

W l
ijφ(y l−1

j (a)) + B l
i , for l ≥ 2.
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Limit of infinite width

1 When Nl−1 is large, y li (a) are iid centred Gaussian variables. By
induction, this is true for all l .

2 Stronger result : when Nl = +∞ for all l (recursively), y li (.) are
independent (across i) centred Gaussian processes.
(first proposed by Neal [1995] in the single layer case and has been
recently extended to the multiple layer case by Lee et al. [2018] and
Matthews et al. [2018])
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Information Propagation

For two inputs a, b, let ql(a) be the variance of y l1(a) and c lab the
correlation of y l1(a) and y l1(b).

1 Variance propagation : ql = F (ql−1)
where F (x) = σ2

b + σ2
wE[φ(

√
xZ )2] , Z ∼ N (0, 1))

2 Correlation propagation : c l+1 = fl(c
l)

where fl(x) =
σ2
b+σ2

wE[φ(
√

qlaZ1)φ(
√

qlb(xZ1+
√

1−x2Z2))√
qla
√

qlb
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Depth scales

Schoenholz et al. [2017] established the existence of c ∈ [0, 1] such that
|c lab − c | ∼ e−l/εc where εc = − log(χ) and χ = σ2

wE[φ′(
√
qZ )] (q is the

limiting variance). The equation χ1 = 1 corresponds to an infinite depth
scale of the correlation. It is called the edge of chaos as it separates two
phases :

Ordered phase where χ1 < 1 (c = 1): the correlation converges
(exponentially) to 1. In this case, two different inputs will have the
same output.

Chaotic phase where χ1 > 1 (c < 1): the correlation converges
(exponentially) to some value c < 1. In this case, very close inputs
will have very different outputs (the output function is discontinuous
everywhere).
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Ordered phase

Figure: Output of a 300x20 Tanh network with (σb, σw ) = (1, 1)(Ordered phase)
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Chaotic phase

Figure: A draw of the output of a 300x20 Tanh network with (σb, σw ) = (0.3, 2)
(chaotic phase)
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Edge of Chaos

Definition

For (σb, σw ) ∈ Dφ,var , let q be the limiting variance. The Edge of Chaos,
hereafter EOC, is the set of values of (σb, σw ) satisfying
χ1 = σ2

wE[φ′(
√
qZ )2] = 1.

Having χ1 = 1 is linked to an infinite depth scale → Sub-exponential
convergence rate for the correlation

For ReLU, the EOC = {(0,
√

2)}. This coincides with the
recommendation of He et al. [2015]

.
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Edge of Chaos for ReLU

Proposition 1 : EOC acts as Residual connections

Consider a ReLU network with parameters (σ2
b, σ

2
w ) = (0, 2) ∈ EOC and

let c lab be the corresponding correlation. Consider also a ReLU network
with simple residual connections given by

y li (a) = y l−1
i (a) +

Nl−1∑
j=1

W
l
ijφ(y l−1

j (a)) + B
l
i

where W
l
ij

iid∼ N (0, σ2
w

Nl−1
) and B

l
i
iid∼ N (0, σ2

b). Let c lab be the

corresponding correlation. Then, by taking σw > 0 and σb = 0, there
exists a constant γ > 0 such that

1− c lab ∼ γ(1− c lab) ∼ 9π2

2l2
as l →∞.
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Impact of Smoothness

Class A
Let φ ∈ D2

g . We say that φ is in A if there exists n ≥ 1, a partition

(Si )1≤i≤n of R and g1, g2, ..., gn ∈ C2
g such that φ(2) =

∑n
i=1 1Sigi .

Proposition 3 : Convergence rate for smooth Activation functions

Let φ ∈ A such that φ non-linear (i.e. φ(2) is non-identically zero). Then,

on the EOC, we have 1− c l ∼ βq
l where βq =

2E[φ′(
√
qZ)2]

qE[φ′′(
√
qZ)2]

.

Example : Tanh, Swish, ELU (with α = 1) ...

The non-smoothness of ReLU-like Activations makes the convergence
rate worse on the EOC
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Impact of Smoothness

Figure: Impact of the smoothness of the activation function on the convergence
of the correlation on the EOC. The convergence rate for ReLU is O(1/`2) and
O(1/`) for ELU and Tanh.
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Experiments : Impact of Initializtion on the EOC

[ELU] [ReLU]

Figure: 100 epochs of the training curve (test accuracy) for different activation
functions for depth 200 and width 300 using SGD. The red curves correspond to
the EOC, the green ones correspond to an ordered phase, and the blue curves
corresponds to an Initialization on the EOC plus a Batch Normalization after each
layer. Upper figures show the test accuracies with respect to the epochs while
lower figures show the accuracies with respect to time.
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Experiments : Impact of Initiliaztion on the EOC

Table: Test accuracies for width 300 and depth 200 with different activations on
MNIST and CIFAR10 after 100 epochs using SGD

MNIST EOC EOC + BN Ord Phase

ReLU 93.57± 0.18 93.11± 0.21 10.09± 0.61
ELU 97.62± 0.21 93.41± 0.3 10.14± 0.51
Tanh 97.20± 0.3 10.74± 0.1 10.02± 0.13
S-Softplus 10.32± 0.41 9.92± 0.12 10.09± 0.53

CIFAR10 EOC EOC + BN Ord Phase

ReLU 36.55± 1.15 35.91± 1.52 9.91± 0.93
ELU 45.76± 0.91 44.12± 0.93 10.11± 0.65
Tanh 44.11± 1.02 10.15± 0.85 9.82± 0.88
S-Softplus 10.13± 0.11 9.81± 0.63 10.05± 0.71
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Experiments : Impact of Smoothness

Table: Test accuracies for width 300 and depth 200 with different activations on
MNIST and CIFAR10 using SGD

MNIST Epoch 10 Epoch 50 Epoch 100

ReLU 66.76± 1.95 88.62± 0.61 93.57± 0.18
ELU 96.09± 1.55 97.21± 0.31 97.62± 0.21
Tanh 89.75± 1.01 96.51± 0.51 97.20± 0.3

CIFAR10 Epoch 10 Epoch 50 Epoch 100

ReLU 26.46± 1.68 33.74± 1.21 36.55± 1.15
ELU 35.95± 1.83 45.55± 0.91 47.76± 0.91
Tanh 34.12± 1.23 43.47± 1.12 44.11± 1.02
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