Google

Adversarial Examples are a Natural Consequence of Test Error in Noise

Nic Ford*, Justin Gilmer*, Nicholas Carlini, Dogus Cubuk

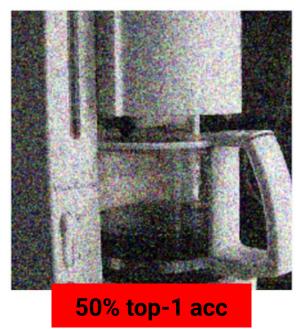
Robust (out of distribution) Generalization

Train on p(x)

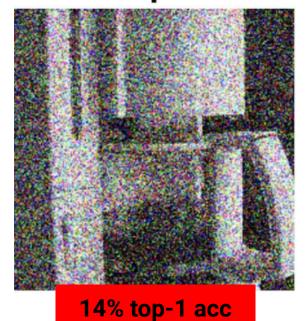
Test on q(x)

Gaussian noise

 $\sigma = .2$ "Toaster"



 $\sigma = .4$ "Computer"

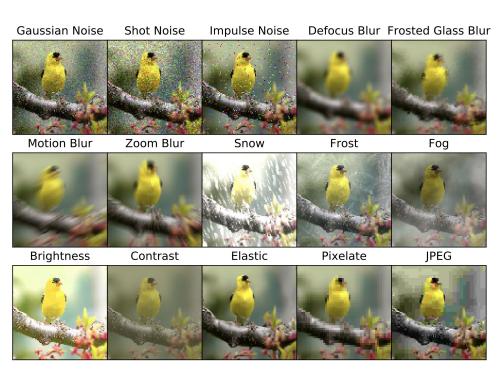


Corruption Robustness

 Goal: Measure and improve model robustness to distributional shift.

See also:

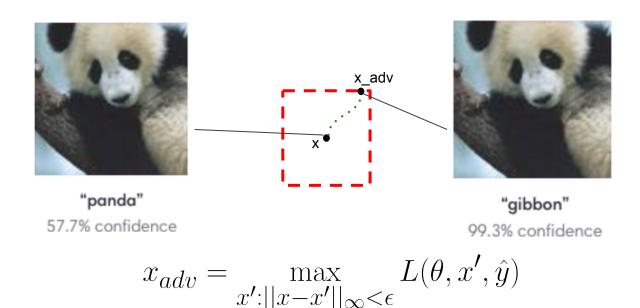
[Mu, Gilmer] "MNIST-C" https://arxiv.org/abs/1906.02337 [Pei et. al.] - https://arxiv.org/pdf/1712.01785.pdf



[Hendrycks et. al] https://arxiv.org/pdf/1807.01697.pdf

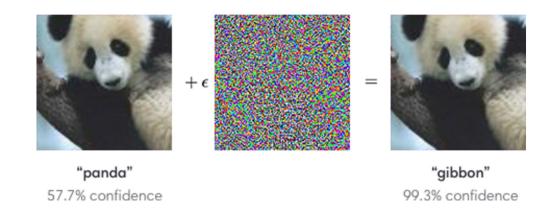
Adversarial Examples - The "Surprising" Phenomenon

- In 2013 it was discovered that neural networks have "adversarial examples".
- 2000+ papers written on this topic.

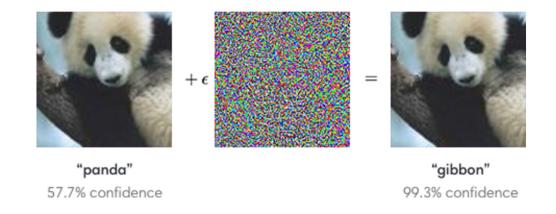


[Goodfellow et. al.]

Why do our models have adversarial examples?

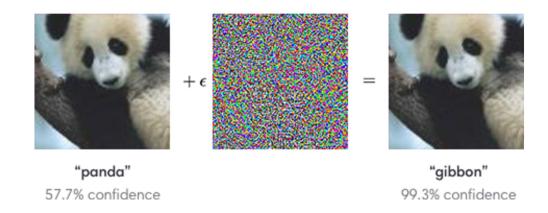


Why do our models have adversarial examples? A: ???



Why do our models have adversarial examples? A: ???

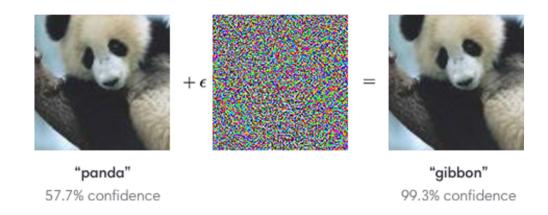
What are adversarial examples?



Why do our models have adversarial examples? **A:** ???

What are adversarial examples?

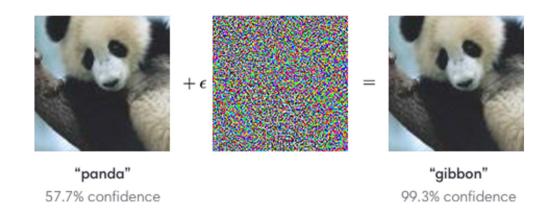
A: The nearest error



Why do our models have adversarial examples? **A:** ???

What are adversarial examples?

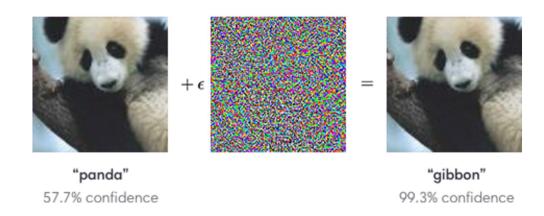
A: The nearest error



Why do our models have (o.o.d) **test error?** A: ???

What are adversarial examples?

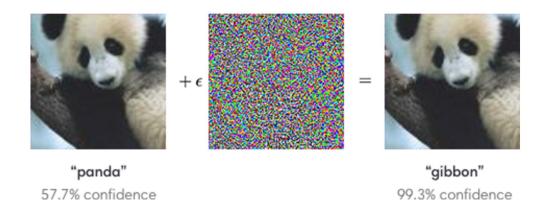
A: The nearest error



Why do our models have (o.o.d) **test error?** A: ???

What are adversarial examples?

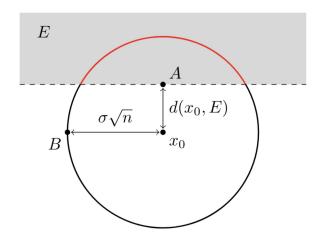
A: The nearest error

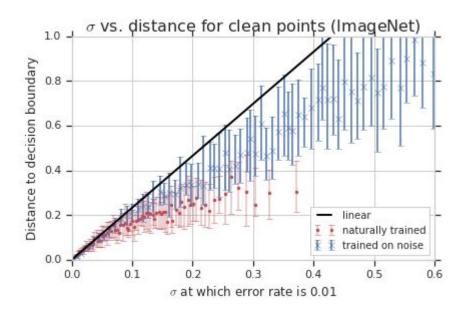


Test error > 0 (iid, ood) -> errors exist -> there is a nearest error

Linear Assumption

1% error rate on random perturbations of norm 79 => adv ex at norm .5





See also Fawzi et. al.

Adversarial Defenses

L_{∞} -metric ($\epsilon=0.3$)		
Transfer Attacks	0.08 / 0%	0.44/85%
FGSM	0.10 / 4%	0.43 / $77%$
FGSM w/ GE	0.10/21%	0.42 / 71%
L_{∞} DeepFool	0.08 / 0%	0.38 / 74%
L_{∞} DeepFool w/ GE	0.09 / 0%	0.37/67%
BIM	0.08 / 0%	0.36/70%
BIM w/ GE	0.08/37%	∞ / 70%
MIM	0.08 / 0%	0.37/71%
MIM w/ GE	0.09/36%	∞ / 69%
All L_∞ Attacks	0.08 / 0%	0.34 / 64%

Google

Adversarial Defenses

Not a useful	measure of
robustness	

L_{∞} -metric ($\epsilon=0.3$)		
Transfer Attacks	0.08 / 0%	$\boldsymbol{0.44}/85\%$
FGSM	0.10 / 4%	0.43 / $77%$
FGSM w/ GE	0.10 / $21%$	0.42 / 71%
L_{∞} DeepFool	0.08 / 0%	0.38 / $74%$
L_{∞} DeepFool w/ GE	0.09 / 0%	0.37/67%
BIM	0.08 / 0%	0.36/70%
BIM w/ GE	0.08 / $37%$	∞ / 70%
MIM	0.08 / 0%	0.37/71%
MIM w/ GE	0.09/36%	∞ / 69%
All L_∞ Attacks	0.08 / 0%	0.34 / 64%

Conclusion

- It is not surprising that models have a nearest error.
- The nearest error is not unusually close given measured o.o.d robustness.
- The robustness problem is much broader than tiny perturbations.
- If a method doesn't improve o.o.d robustness, is it more secure?

