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Examples for Permutation Invariant Problems: 
Detecting Common Attributes

Smiling

Blond Hair

CelebA Dataset, Liu et al.
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Theorem	1	(Zaheer	et	al.):	This	architecture	can	successfully	model	
any	permutation	invariant	function,	even	for	latent	dimension	N=1.
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Theorem	1	(Zaheer	et	al.):	This	architecture	can	successfully	model	
any	permutation	invariant	function,	even	for	latent	dimension	N=1.

Proof
Assume that neural 
networks Φ and ρ are 
universal function 
approximators

Find a Φ such that 
mapping from input 
set X to latent 
representation Y is 
injective

& Everything can 
be modelled 

define c(x) : ℚ → ℕ

then define ϕ(x) = 2c(x)



Role of Continuity

We need to take real numbers into account!
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decomposed with 
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We show that, in order 
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Φ(X ) = ∑
x

ϕ(x)



Illustrative Example: Regressing to the Median

{0.1, 0.6, − 0.32, 1.61, 0.5, 0.67, 0.3}



Illustrative Example: Regressing to the Median

{0.1, 0.6, − 0.32, 1.61, 0.5, 0.67, 0.3}



100 101 102 103

N (latent dim)

10�2

10�1

100

R
M

SE

15
30
60
100
200
300
400
500

0 100 200 300 400 500 600

input size M

0

20

40

60

80

100

cr
it

ic
al

la
te

nt
di

m
N

c

Illustrative Example: Regressing to the Median
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