Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians

Vardan Papyan

Department of Statistics Stanford University

June 13, 2019

Setting

- C-class classification problem

Setting

- C-class classification problem
- Loss:

$$
\mathcal{L}(\theta)=\operatorname{Ave}_{i, c}\left\{\ell\left(f\left(x_{i, c} ; \theta\right), y_{c}\right)\right\}
$$

Setting

- C-class classification problem
- Loss:

$$
\mathcal{L}(\theta)=\operatorname{Ave}_{i, c}\left\{\ell\left(f\left(x_{i, c} ; \theta\right), y_{c}\right)\right\}
$$

- Hessian:

$$
\operatorname{Hess}(\theta)=\operatorname{Ave}_{i, c}\left\{\frac{\partial^{2} \ell\left(f\left(x_{i, c} ; \theta\right), y_{c}\right)}{\partial \theta^{2}}\right\}
$$

Setting

- C-class classification problem
- Loss:

$$
\mathcal{L}(\theta)=\operatorname{Ave}_{i, c}\left\{\ell\left(f\left(x_{i, c} ; \theta\right), y_{c}\right)\right\}
$$

- Hessian:

$$
\operatorname{Hess}(\theta)=\operatorname{Ave}_{i, c}\left\{\frac{\partial^{2} \ell\left(f\left(x_{i, c} ; \theta\right), y_{c}\right)}{\partial \theta^{2}}\right\}
$$

- Gauss-Newton decomposition:

$$
\text { Hess }=G+H
$$

Previous work: LeCun et al. (1998)

Eigenvalue magnitude

Previous work: Dauphin et al. (2014)

Previous work: Sagun et al. (2017)

- Noticed that the spectrum can be decomposed into:

Previous work: Sagun et al. (2017)

- Noticed that the spectrum can be decomposed into:
- Bulk+outliers

Previous work: Sagun et al. (2017)

- Noticed that the spectrum can be decomposed into:
- Bulk+outliers
- Number of outliers \approx number of classes

This work

What is causing the outliers in the spectrum?

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

- $\delta_{i, c, c}$: gradient of i-th example in c-th class (up to a scalar)

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

- $\delta_{i, c, c}$: gradient of i-th example in c-th class (up to a scalar)
- $\delta_{i, c, c^{\prime}}$: gradient of i-th example in c-th class, if it belonged to class c^{\prime} instead (up to a scalar)

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

- $\delta_{i, c, c}$: gradient of i-th example in c-th class (up to a scalar)
- $\delta_{i, c, c^{\prime}}$: gradient of i-th example in c-th class, if it belonged to class c^{\prime} instead (up to a scalar)
- These gradients can be indexed by three numbers:

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

- $\delta_{i, c, c}$: gradient of i-th example in c-th class (up to a scalar)
- $\delta_{i, c, c^{\prime}}$: gradient of i-th example in c-th class, if it belonged to class c^{\prime} instead (up to a scalar)
- These gradients can be indexed by three numbers:
- i : observation

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

- $\delta_{i, c, c}$: gradient of i-th example in c-th class (up to a scalar)
- $\delta_{i, c, c^{\prime}}$: gradient of i-th example in c-th class, if it belonged to class c^{\prime} instead (up to a scalar)
- These gradients can be indexed by three numbers:
- i : observation
- c: true class

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

- $\delta_{i, c, c}$: gradient of i-th example in c-th class (up to a scalar)
- $\delta_{i, c, c^{\prime}}$: gradient of i-th example in c-th class, if it belonged to class c^{\prime} instead (up to a scalar)
- These gradients can be indexed by three numbers:
- i : observation
- c: true class
- c^{\prime} : potential class

G is a second moment of gradients with structure on indices

- Define the gradient:

$$
\delta_{i, c, c^{\prime}}{ }^{T}=\sqrt{p_{c^{\prime}}\left(x_{i, c} ; \theta\right)}\left(y_{c^{\prime}}-p\left(x_{i, c} ; \theta\right)\right)^{T} \frac{\partial f\left(x_{i, c} ; \theta\right)}{\partial \theta}
$$

- $\delta_{i, c, c}$: gradient of i-th example in c-th class (up to a scalar)
- $\delta_{i, c, c^{\prime}}$: gradient of i-th example in c-th class, if it belonged to class c^{\prime} instead (up to a scalar)
- These gradients can be indexed by three numbers:
- i : observation
- c: true class
- c^{\prime} : potential class
- G is a second moment (not Covariance) of these gradients:

$$
G=\operatorname{Ave}_{i, c, c^{\prime}}\left\{\delta_{i, c, c^{\prime}} \delta_{i, c, c^{\prime}}^{T}\right\}
$$

Three-level hierarchical structure in gradients

- Averaging over the index i

Three-level hierarchical structure in gradients

- Averaging over the index i
- Averaging over the index c^{\prime}

Three-level hierarchical structure in gradients

- Averaging over the index i
- Averaging over the index c^{\prime}
- Averaging over the index c

Visualization of three-level hierarchical structure in gradients

Figure: ResNet50 trained on ImageNet. Large circles: δ_{c}. Small circles: $\delta_{c, c^{\prime}}$.

Visualization of three-level hierarchical structure in gradients

MNIST, 13 examples per class

MNIST, 702 examples per class

Fashion, 13 examples per class

Fashion, 702 examples per class

Fashion, 5000 examples per class
 CIFAR10, 13 examples per class

CIFAR10, 702 examples per class

$\begin{array}{llllllllll}-30 & -25 & -20 & -15 & -10 & -5 & 0 & 5 & 10 & 15\end{array} 20 \quad 25 \quad 30 \quad 35$
t-SNEX
CIFAR10, 5000 examples per class

Ave ${ }_{c}\left\{\delta_{c} \delta_{c}^{T}\right\}$ causes outliers in G

Figure: ResNet18 trained on CIFAR10, 1351 examples per class. Orange: eigenvalues of $\mathrm{Ave}_{c}\left\{\delta_{c} \delta_{c}^{T}\right\}$.

Ave $_{c}\left\{\delta_{c} \delta_{c}^{T}\right\}$ causes outliers in G

MNIST, 136 examples per class

MNIST, 365 examples per class
 MNIST, 702 examples per class

MNIST, 2599 examples per class

Fashion, 136 examples per class

Fashion, 365 examples per class

Fashion, 702 examples per class

Fashion, 2599 examples per class CIFAR10, 1351 examples per class

