

ICML 2019 Long Beach, CA

Global Convergence of Block Coordinate Descent in Deep Learning

Jinshan Zeng^{12*} Tim Tsz-Kit Lau^{3*} Shaobo Lin⁴ Yuan Yao² ¹Jiangxi Normal Univ. ²HKUST ³Northwestern ⁴CityU HK ^{*}Equal contribution

Tim Tsz-Kit Lau

Department of Statistics Northwestern University

INTRODUCTION

MOTIVATION OF BLOCK COORDINATE DESCENT (BCD) IN DEEP LEARNING

- Gradient-based methods are commonly used in training deep neural networks
- But gradient-based methods may suffer from various problems for deep networks
- Gradients of the loss function w.r.t. parameters of earlier layers involve those of later layers
 - \Rightarrow Gradient vanishing
 - \Rightarrow Gradient exploding
- First-order gradient-based methods does not work well

MOTIVATION OF BLOCK COORDINATE DESCENT (BCD) IN DEEP LEARNING

- Gradient-free methods have recently been adapted to training DNNs:
 - Block Coordinate Descent (BCD)
 - Alternating Direction Method of Multipliers (ADMM)
- Advantages of Gradient-free Methods:
 - Deal with non-differentiable nonlinearities
 - Potentially avoid vanishing gradient
 - Can be easily implemented in a distributed and parallel fashion

BLOCK COORDINATE DESCENT IN DEEP LEARNING

Introduction Block (Coordinate Descent in Deep Learning	Block Coordinate Descent (BCD) Algorithms			
000 0000	00	0000	00000	00000	000

BLOCK COORDINATE DESCENT IN DEEP LEARNING

- View parameters of hidden layers and the output layer as variable blocks
- Variable splitting:

Split the highly coupled network layer-wise to compose a surrogate loss function

- Notations:
 - $\mathcal{W} := \{ \boldsymbol{W}_\ell \}_{\ell=1}^L$: the set of layer parameters
 - $\mathfrak{L}: \mathbb{R}^k \times \mathbb{R}^k \xrightarrow{\sim} \mathbb{R}_+ \cup \{0\}: \text{loss function}$
 - $\Phi(\mathbf{x}_i; \mathcal{W}) := \sigma_L(\mathbf{W}_L \sigma_{L-1}(\mathbf{W}_{L-1} \cdots \mathbf{W}_2 \sigma_1(\mathbf{W}_1 \mathbf{x}_i)))$: the neural network
- Empirical risk minimization:

$$\min_{\mathcal{W}} \mathcal{R}_n(\Phi(oldsymbol{X};\mathcal{W}),oldsymbol{Y}) := rac{1}{n} \sum_{i=1}^n \mathfrak{L}(\Phi(oldsymbol{x}_i;\mathcal{W}),oldsymbol{y}_i)$$

• Two ways of variable splitting appear in the literature

Introduction Block Coordinate Descent in Deep Learning	Block Coordinate Descent (BCD) Algorithms			
000 00000	0000	00000	00000	000

BCD IN DEEP LEARNING: TWO-SPLITTING FORMULATION

 \circ Introduce one set of auxiliary variables $\mathcal{V} := \{V_\ell\}_{\ell=1}^L$

$$\begin{split} \min_{\mathcal{W},\mathcal{V}} \ \mathcal{L}_0(\mathcal{W},\mathcal{V}) &:= \mathcal{R}_n(\mathbf{V}_L;\mathbf{Y}) + \sum_{\ell=1}^L r_\ell(\mathbf{W}_\ell) + \sum_{\ell=1}^L s_\ell(\mathbf{V}_\ell) \\ \text{subject to} \quad \mathbf{V}_\ell &= \sigma_\ell(\mathbf{W}_\ell \mathbf{V}_{\ell-1}), \ \ell \in \{1,\ldots,L\} \end{split}$$

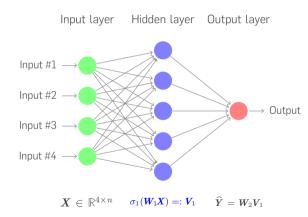
- $\circ~$ The functions r_ℓ and s_ℓ are regularizers
- Rewritten as unconstrained optimization:

$$\min_{\mathcal{W},\mathcal{V}} \mathcal{L}(\mathcal{W},\mathcal{V}) := \mathcal{L}_0(\mathcal{W},\mathcal{V}) + \frac{\gamma}{2} \sum_{\ell=1}^L \| \mathbf{V}_\ell - \sigma_\ell(\mathbf{W}_\ell \mathbf{V}_{\ell-1}) \|_F^2$$

 $\circ \ \gamma > 0 \text{ is a hyperparameter}$

	Block Coordinate Descent in Deep Learning	Block Coordinate Descent (BCD) Algorithms			
000	000000	0000	00000	00000	000

TWO-SPLITTING FORMULATION: GRAPHICAL ILLUSTRATION



Jointly minimize the *distances* (in terms of squared Frobenius norms) between the input and the output of hidden layers

$$\circ\;$$
 E.g., define $oldsymbol{V}_0:=oldsymbol{X}$,

 $\| V_1 - \sigma_1 (V_1 V_0) \|_F^2$

Introduction Block Coordinate Descent in Deep Learning	Block Coordinate Descent (BCD) Algorithms			
000 00000	0000	00000	00000	000

BCD IN DEEP LEARNING: THREE-SPLITTING FORMULATION

 \circ Introduce two sets of auxiliary variables $\mathcal{U}:=\{U_\ell\}_{\ell=1}^L, \mathcal{V}:=\{V_\ell\}_{\ell=1}^L$

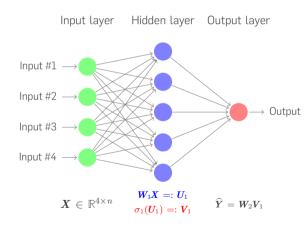
 $\min_{\mathcal{W},\mathcal{V},\mathcal{U}} \mathcal{L}_0(\mathcal{W},\mathcal{V}) \quad \text{subject to} \quad \boldsymbol{U}_{\ell} = \boldsymbol{W}_{\ell} \boldsymbol{V}_{\ell-1}, \ \boldsymbol{V}_{\ell} = \sigma_{\ell}(\boldsymbol{U}_{\ell}), \ \ell \in \{1,\ldots,L\}$

• Rewritten as unconstrained optimization:

$$\min_{\mathcal{W},\mathcal{V},\mathcal{U}} \overline{\mathcal{L}}(\mathcal{W},\mathcal{V},\mathcal{U}) := \mathcal{L}_0(\mathcal{W},\mathcal{V}) + \frac{\gamma}{2} \sum_{\ell=1}^{L} \left[\| \boldsymbol{V}_{\ell} - \sigma_{\ell}(\boldsymbol{U}_{\ell}) \|_F^2 + \| \boldsymbol{U}_{\ell} - \boldsymbol{W}_{\ell} \boldsymbol{V}_{\ell-1} \|_F^2 \right],$$

• Variables more loosely coupled than those in two-splitting

THREE-SPLITTING FORMULATION: GRAPHICAL ILLUSTRATION



- Jointly minimize the *distances* (in terms of squared Frobenius norms) between
 - 1. the input and the *pre-activation* output of hidden layers
 - 2. the *pre-activation* output and the *post-activation* output of hidden layers
- \circ E.g., define $oldsymbol{V}_0:=oldsymbol{X}$,

 $egin{aligned} \|m{U}_1 - m{W}_1m{V}_0\|_F^2 \ &+ \|m{V}_1 - \sigma_1(m{U}_1)\|_F^2 \end{aligned}$

BLOCK COORDINATE DESCENT (BCD) ALGORITHMS

		Block Coordinate Descent (BCD) Algorithms			
000	000000	0000	00000	00000	000

BLOCK COORDINATE DESCENT (BCD) ALGORITHMS

- Devise algorithms for training DNNs based on the two formulations
- o Update all the variables cyclically while fixing the remaining blocks
- Update in a backward order as in **backpropagation**
- Adopt the proximal update strategies

		Block Coordinate Descent (BCD) Algorithms			
000	000000	0000	00000	00000	000

BCD ALGORITHM (TWO-SPLITTING)

Algorithm 1 Two-splitting BCD for DNN Training

$$\begin{aligned} & \text{Data: } \boldsymbol{X} \in \mathbb{R}^{d \times n}, \boldsymbol{Y} \in \mathbb{R}^{k \times n} \\ & \text{Initialization: } \{ \boldsymbol{W}_{\ell}^{(0)}, \boldsymbol{V}_{\ell}^{(0)} \}_{\ell=1}^{L}, \boldsymbol{V}_{0}^{(t)} \equiv \boldsymbol{V}_{0} := \boldsymbol{X} \\ & \text{Hyperparameters: } \gamma > 0, \alpha > 0 \\ & \text{for } t = 1, \dots \text{ do} \\ & \boldsymbol{V}_{L}^{(t)} = \operatorname{argmin}_{\boldsymbol{V}_{L}} \{ s_{L}(\boldsymbol{V}_{L}) + \mathcal{R}_{n}(\boldsymbol{V}_{L}; \boldsymbol{Y}) + \frac{\gamma}{2} \| \boldsymbol{V}_{L} - \boldsymbol{W}_{L}^{(t-1)} \boldsymbol{V}_{L-1}^{(t-1)} \|_{F}^{2} + \frac{\alpha}{2} \| \boldsymbol{V}_{L} - \boldsymbol{V}_{L}^{(t-1)} \|_{F}^{2} \} \\ & \boldsymbol{W}_{L}^{(t)} = \operatorname{argmin}_{\boldsymbol{W}_{L}} \{ r_{L}(\boldsymbol{W}_{L}) + \frac{\gamma}{2} \| \boldsymbol{V}_{L}^{(t)} - \boldsymbol{W}_{L} \boldsymbol{V}_{L-1}^{(t-1)} \|_{F}^{2} + \frac{\alpha}{2} \| \boldsymbol{W}_{L} - \boldsymbol{W}_{L}^{(t-1)} \|_{F}^{2} \} \\ & \text{for } \ell = L - 1, \dots, 1 \text{ do} \\ & \boldsymbol{V}_{\ell}^{(t)} = \operatorname{argmin}_{\boldsymbol{V}_{\ell}} \{ s_{\ell}(\boldsymbol{V}_{\ell}) + \frac{\gamma}{2} \| \boldsymbol{V}_{\ell} - \sigma_{\ell}(\boldsymbol{W}_{\ell}^{(t-1)} \boldsymbol{V}_{\ell-1}^{(t-1)}) \|_{F}^{2} + \frac{\gamma}{2} \| \boldsymbol{V}_{\ell+1}^{(t)} - \sigma_{\ell+1}(\boldsymbol{W}_{\ell+1}^{(t)} \boldsymbol{V}_{\ell}) \|_{F}^{2} + \\ & \frac{\alpha}{2} \| \boldsymbol{V}_{\ell} - \boldsymbol{V}_{\ell}^{(t-1)} \|_{F}^{2} \} \\ & \boldsymbol{W}_{\ell}^{(t)} = \operatorname{argmin}_{\boldsymbol{W}_{\ell}} \{ r_{\ell}(\boldsymbol{W}_{\ell}) + \frac{\gamma}{2} \| \boldsymbol{V}_{\ell}^{(t)} - \sigma_{\ell}(\boldsymbol{W}_{\ell} \boldsymbol{V}_{\ell-1}^{(t-1)}) \|_{F}^{2} + \frac{\alpha}{2} \| \boldsymbol{W}_{\ell} - \boldsymbol{W}_{\ell}^{(t-1)} \|_{F}^{2} \} \\ & \text{end for} \end{aligned}$$

		Block Coordinate Descent (BCD) Algorithms			
000	000000	0000	00000	00000	000

BCD ALGORITHM (THREE-SPLITTING)

Algorithm 2 Three-splitting BCD for DNN training

$$\begin{aligned} & \text{Samples: } X \in \mathbb{R}^{d \times n}, Y \in \mathbb{R}^{k \times n} \\ & \text{Initialization: } \{ W_{\ell}^{(0)}, V_{\ell}^{(0)}, U_{\ell}^{(0)} \}_{\ell=1}^{L}, V_{0}^{(t)} \equiv V_{0} := X \\ & \text{Hyperparameters: } \gamma > 0, \alpha > 0 \\ & \text{for } t = 1, \dots \text{ do} \\ & V_{L}^{(t)} = \operatorname{argmin}_{V_{L}} \{ s_{L}(V_{L}) + \mathcal{R}_{n}(V_{L}; Y) + \frac{\gamma}{2} \| V_{L} - U_{L}^{(t-1)} \|_{F}^{2} + \frac{\alpha}{2} \| V_{L} - V_{L}^{(t-1)} \|_{F}^{2} \} \\ & U_{L}^{(t)} = \operatorname{argmin}_{U_{L}} \{ \frac{\gamma}{2} \| V_{L}^{(t)} - U_{L} \|_{F}^{2} + \frac{\gamma}{2} \| U_{L} - W_{L}^{(t-1)} V_{L-1}^{(t-1)} \|_{F}^{2} \} \\ & W_{L}^{(t)} = \operatorname{argmin}_{W_{L}} \{ r_{L}(W_{L}) + \frac{\gamma}{2} \| U_{L}^{(t)} - W_{L} V_{L-1}^{(t-1)} \|_{F}^{2} + \frac{\alpha}{2} \| W_{L} - W_{L}^{(t-1)} \|_{F}^{2} \} \\ & \text{for } \ell = L - 1, \dots, 1 \text{ do} \\ & V_{\ell}^{(t)} = \operatorname{argmin}_{V_{\ell}} \{ s_{\ell}(V_{\ell}) + \frac{\gamma}{2} \| V_{\ell} - \sigma_{\ell}(U_{\ell}^{(t-1)}) \|_{F}^{2} + \frac{\gamma}{2} \| U_{\ell+1}^{(t)} - W_{\ell+1}^{(t)} V_{\ell} \|_{F}^{2} \} \\ & U_{\ell}^{(t)} = \operatorname{argmin}_{U_{\ell}} \{ \frac{\gamma}{2} \| V_{\ell}^{(t)} - \sigma_{\ell}(U_{\ell}) \|_{F}^{2} + \frac{\gamma}{2} \| U_{\ell} - W_{\ell}^{(t-1)} \|_{F}^{2} + \frac{\alpha}{2} \| U_{\ell} - U_{\ell}^{(t-1)} \|_{F}^{2} \} \\ & W_{\ell}^{(t)} = \operatorname{argmin}_{W_{\ell}} \{ r_{\ell}(W_{\ell}) + \frac{\gamma}{2} \| U_{\ell}^{(t)} - W_{\ell} V_{\ell-1}^{(t-1)} \|_{F}^{2} + \frac{\alpha}{2} \| W_{\ell} - W_{\ell}^{(t-1)} \|_{F}^{2} \} \\ & \text{end for} \end{aligned}$$

GLOBAL CONVERGENCE ANALYSIS

ASSUMPTIONS OF THE FUNCTIONS FOR CONVERGENCE GUARANTEES

Assumption

Suppose that

- (a) the loss function \mathcal{L} is a proper lower semicontinuous¹ and nonnegative function,
- (b) the activation functions σ_{ℓ} ($\ell = 1..., L-1$) are Lipschitz continuous on any bounded set,
- (c) the regularizers r_{ℓ} and s_{ℓ} ($\ell = 1 \dots, L-1$) are nonegative lower semicontinuous convex functions, and
- (d) all these functions \mathcal{L} , σ_{ℓ} , r_{ℓ} and s_{ℓ} ($\ell = 1 \dots, L 1$) are either real analytic or semialgebraic, and continuous on their domains.

¹A function $f : \mathcal{X} \to \mathbb{R}$ is called *lower semicontinuous* if $\liminf_{x \to x_0} f(x) \ge f(x_0)$ for any $x_0 \in \mathcal{X}$.

		Block Coordinate Descent (BCD) Algorithms	Global Convergence Analysis		
000	000000	0000	00000	00000	000

EXAMPLES OF THE FUNCTIONS

Proposition

Examples satisfying Assumption 1 include:

- (a) \mathfrak{L} is the squared, logistic, hinge, or cross-entropy losses;
- (b) σ_{ℓ} is ReLU, leaky ReLU, sigmoid, hyperbolic tangent, linear, polynomial, or softplus activations;

(c) r_{ℓ} and s_{ℓ} are the squared ℓ_2 norm, the ℓ_1 norm, the elastic net, the indicator function of some nonempty closed convex set (such as the nonnegative closed half space, box set or a closed interval [0, 1]), or 0 if no regularization.

		Block Coordinate Descent (BCD) Algorithms	Global Convergence Analysis		
000	000000	0000	00000	00000	000

MAIN THEOREM

Theorem

Let $\{\mathcal{Q}^t := (\{\mathbf{W}_\ell^t\}_{\ell=1}^L, \{\mathbf{V}_\ell^t\}_{\ell=1}^L)\}_{t\in\mathbb{N}}$ and $\{\mathcal{P}^t := (\{\mathbf{W}_\ell^t\}_{\ell=1}^L, \{\mathbf{V}_\ell^t\}_{\ell=1}^L, \{\mathbf{U}_\ell^t\}_{\ell=1}^L)\}_{t\in\mathbb{N}}$ be the sequences generated by Algorithms 1 and 2, respectively. Suppose that Assumption 1 holds, and that one of the following conditions holds: (i) there exists a convergent subsequence $\{\mathcal{Q}^{t_j}\}_{j\in\mathbb{N}}$ (resp. $\{\mathcal{P}^{t_j}\}_{j\in\mathbb{N}}$); (ii) r_ℓ is coercive² for any $\ell = 1, \ldots, L$; (iii) \mathcal{L} (resp. $\overline{\mathcal{L}}$) is coercive. Then for any $\alpha > 0, \gamma > 0$ and any finite initialization \mathcal{Q}^0 (resp. \mathcal{P}^0), the following hold

- (a) $\{\mathcal{L}(\mathcal{Q}^t)\}_{t\in\mathbb{N}}$ (resp. $\{\overline{\mathcal{L}}(\mathcal{P}^t)\}_{t\in\mathbb{N}}$) converges to some \mathcal{L}^{\star} (resp. $\overline{\mathcal{L}}^{\star}$).
- (b) $\{\mathcal{Q}^t\}_{t\in\mathbb{N}}$ (resp. $\{\mathcal{P}^t\}_{t\in\mathbb{N}}$) converges to a critical point of \mathcal{L} (resp. $\overline{\mathcal{L}}$).
- (c) $\frac{1}{T} \sum_{t=1}^{T} \|\boldsymbol{g}^t\|_F^2 \to 0$ at the rate $\mathcal{O}(1/T)$ where $\boldsymbol{g}^t \in \partial \mathcal{L}(\mathcal{Q}^t)$. Similarly, $\frac{1}{T} \sum_{t=1}^{T} \|\bar{\boldsymbol{g}}^t\|_F^2 \to 0$ at the rate $\mathcal{O}(1/T)$ where $\bar{\boldsymbol{g}}^t \in \partial \overline{\mathcal{L}}(\mathcal{P}^t)$.

²An extended-real-valued function $h : \mathbb{R}^p \to \mathbb{R} \cup \{+\infty\}$ is called *coercive* if and only if $h(x) \to +\infty$ as $||x|| \to +\infty$.

		Block Coordinate Descent (BCD) Algorithms	Global Convergence Analysis		
000	000000	0000	00000	00000	000

EXTENSIONS

Extensions

- 1. Prox-linear updates instead of proximal update strategies
- 2. Residual Networks (ResNets) with skip connections

Global convergence of both extensions are also proved

		Block Coordinate Descent (BCD) Algorithms		Proof Ideas	
000	000000	0000	00000	00000	000

Four key ingredients:

- The sufficient descent condition
- The *relative error* condition
- The continuity condition of the objective function
- The Kurdyka-Łojasiewicz property of the objective function

Establishing the **sufficient descent** and the **relative error** conditions require two kinds of assumptions:

- (a) Multiconvexity and differentiability assumptions, and
- (b) **(Blockwise) Lipschitz differentiability** assumption on the unregularized part of objective function

	Block Coordinate Descent (BCD) Algorithms	Proof Ideas	
		00000	

 $\circ~$ In our cases, the unregularized part of ${\cal L}$ in two-splitting formulation,

$$\mathcal{R}_n(oldsymbol{V}_L;oldsymbol{Y}) + rac{\gamma}{2}\sum_{\ell=1}^L \|oldsymbol{V}_\ell - \sigma_\ell(oldsymbol{W}_\elloldsymbol{V}_{\ell-1})\|_F^2,$$

and that of $\overline{\mathcal{L}}$ in three-splitting formulation,

$$\mathcal{R}_n(oldsymbol{V}_L;oldsymbol{Y}) + rac{\gamma}{2}\sum_{\ell=1}^L \left[\|oldsymbol{V}_\ell - \sigma_\ell(oldsymbol{U}_\ell)\|_F^2 + \|oldsymbol{U}_\ell - oldsymbol{W}_\elloldsymbol{V}_{\ell-1}\|_F^2
ight]$$

usually do NOT satisfy any of assumption (a) and assumption (b)

• E.g., when σ_{ℓ} is **ReLU** or **leaky ReLU**, the functions $\|V_{\ell} - \sigma_{\ell}(W_{\ell}V_{\ell-1})\|_{F}^{2}$ and $\|V_{\ell} - \sigma_{\ell}(U_{\ell})\|_{F}^{2}$ are non-differentiable and nonconvex with respect to W_{ℓ} -block and U_{ℓ} -block, respectively

		Block Coordinate Descent (BCD) Algorithms		Proof Ideas	
000	000000	0000	00000	00000	000

To overcome these challenges:

- (i) Exploit the **proximal strategies** for all the *non-strongly convex* subproblems to cheaply obtain the desired *sufficient descent* property
- (ii) Take advantage of the Lipschitz continuity of the activations as well as the specific splitting formulations to yield the desired *relative error* property

SUMMARY OF THEORETICAL RESULTS OF THIS PAPER

Theoretical Results

- 1. Global convergence to a critical point at a rate of $\mathcal{O}(1/T)$, where T is the number of iterations
- 2. Further, if the initialization is sufficiently close to some global minimum of \mathcal{L} or $\overline{\mathcal{L}}$, then both the sequences generated by Algorithms 1 and 2 converges to their corresponding global minima

3. Comparison with the convergence of SGD/stochastic subgradient method:

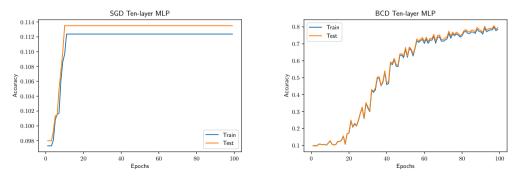
- BCD: Global (whole sequence) convergence
- SGD (Davis et al., 2019): Subsequence convergence

DEMONSTRATION

		Block Coordinate Descent (BCD) Algorithms			Demonstration
000 (000000	0000	00000	00000	000

DEMONSTRATION

- 10-class classification for the MNIST handwritten digit (0–9) dataset (with 60K training samples; 10K test samples)
- Fully-connected neural network (MLP)
- o 10 hidden layers
- Comparison of training and test accuracies (after 100 epochs)



Poster #78

Paper: http://proceedings.mlr.press/v97/zeng19a.html

GitHub: https://github.com/timlautk/BCD-for-DNNs-PyTorch

The End Thank you!