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MOTIVATION OF BLOCK COORDINATE DESCENT (BCD) IN DEEP LEARNING

◦ Gradient-based methods are commonly used in training deep neural networks
◦ But gradient-based methods may suffer from various problems for deep networks
◦ Gradients of the loss function w.r.t. parameters of earlier layers involve those of
later layers
⇒ Gradient vanishing
⇒ Gradient exploding

◦ First-order gradient-based methods does not work well

3



Introduction Block Coordinate Descent in Deep Learning Block Coordinate Descent (BCD) Algorithms Global Convergence Analysis Proof Ideas Demonstration

MOTIVATION OF BLOCK COORDINATE DESCENT (BCD) IN DEEP LEARNING

◦ Gradient-free methods have recently been adapted to training DNNs:
– Block Coordinate Descent (BCD)
– Alternating Direction Method of Multipliers (ADMM)

◦ Advantages of Gradient-free Methods:
– Deal with non-differentiable nonlinearities
– Potentially avoid vanishing gradient
– Can be easily implemented in a distributed and parallel fashion
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BLOCK COORDINATE DESCENT IN DEEP LEARNING

◦ View parameters of hidden layers and the output layer as variable blocks
◦ Variable splitting:
Split the highly coupled network layer-wise to compose a surrogate loss function

◦ Notations:
– W := {W`}L

`=1: the set of layer parameters
– L : Rk × Rk → R+ ∪ {0}: loss function
– Φ(xi ;W) := σL(WLσL−1(WL−1 · · ·W2σ1(W1xi))): the neural network

◦ Empirical risk minimization:

min
W

Rn(Φ(X;W),Y ) :=
1

n

n∑
i=1

L(Φ(xi ;W),yi)

◦ Two ways of variable splitting appear in the literature
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BCD IN DEEP LEARNING: TWO-SPLITTING FORMULATION

◦ Introduce one set of auxiliary variables V := {V`}L
`=1

min
W,V

L0(W,V) := Rn(VL;Y ) +

L∑
`=1

r`(W`) +

L∑
`=1

s`(V`)

subject to V` = σ`(W`V`−1), ` ∈ {1, . . . ,L}

◦ The functions r` and s` are regularizers
◦ Rewritten as unconstrained optimization:

min
W,V

L(W,V) := L0(W,V) + γ

2

L∑
`=1

‖V` − σ`(W`V`−1)‖2F ,

◦ γ > 0 is a hyperparameter
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TWO-SPLITTING FORMULATION: GRAPHICAL ILLUSTRATION

Input #1

Input #2

Input #3

Input #4

Output

Hidden layerInput layer Output layer

σ1(W1X) =:V1X ∈ R4×n Ŷ = W2V1

◦ Jointly minimize the distances (in
terms of squared Frobenius
norms) between the input and the
output of hidden layers

◦ E.g., defineV0 :=X ,

‖V1 − σ1(W1V0)‖2F
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BCD IN DEEP LEARNING: THREE-SPLITTING FORMULATION

◦ Introduce two sets of auxiliary variables U := {U`}L
`=1, V := {V`}L

`=1

min
W,V,U

L0(W,V) subject to U` =W`V`−1, V` = σ`(U`), ` ∈ {1, . . . ,L}

◦ Rewritten as unconstrained optimization:

min
W,V,U

L(W,V, U) := L0(W,V) + γ

2

L∑
`=1

[
‖V` − σ`(U`)‖2F + ‖U` −W`V`−1‖2F

]
,

◦ Variables more loosely coupled than those in two-splitting
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THREE-SPLITTING FORMULATION: GRAPHICAL ILLUSTRATION

Input #1

Input #2

Input #3

Input #4

Output

Hidden layerInput layer Output layer

W1X =: U1

σ1(U1) =:V1
X ∈ R4×n Ŷ = W2V1

◦ Jointly minimize the distances (in
terms of squared Frobenius
norms) between
1. the input and the pre-activation

output of hidden layers
2. the pre-activation output and

the post-activation output of
hidden layers

◦ E.g., defineV0 :=X ,

‖U1 −W1V0‖2F
+ ‖V1 − σ1(U1)‖2F
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BLOCK COORDINATE DESCENT (BCD) ALGORITHMS

◦ Devise algorithms for training DNNs based on the two formulations
◦ Update all the variables cyclically while fixing the remaining blocks
◦ Update in a backward order as in backpropagation
◦ Adopt the proximal update strategies
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BCD ALGORITHM (TWO-SPLITTING)

Algorithm 1 Two-splitting BCD for DNN Training

Data:X ∈ Rd×n ,Y ∈ Rk×n

Initialization: {W (0)
` ,V (0)

` }L
`=1,V

(t)
0 ≡V0 :=X

Hyperparameters: γ > 0, α > 0
for t = 1, . . . do

V (t)
L = argminVL

{sL(VL)+Rn(VL;Y )+ γ
2 ‖VL −W (t−1)

L V (t−1)
L−1 ‖2F + α

2 ‖VL −V (t−1)
L ‖2F}

W (t)
L = argminWL

{rL(WL) +
γ
2 ‖V

(t)
L −WLV (t−1)

L−1 ‖2F + α
2 ‖WL −W (t−1)

L ‖2F}
for ` = L − 1, . . . , 1 do

V (t)
` = argminV`

{s`(V`)+
γ
2 ‖V`−σ`(W (t−1)

` V (t−1)
`−1 )‖2F+ γ

2 ‖V
(t)
`+1−σ`+1(W (t)

`+1V`)‖2F+
α
2 ‖V` −V (t−1)

` ‖2F}
W (t)

` = argminW`
{r`(W`) +

γ
2 ‖V

(t)
` − σ`(W`V (t−1)

`−1 )‖2F + α
2 ‖W` −W (t−1)

` ‖2F}
end for

end for
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BCD ALGORITHM (THREE-SPLITTING)

Algorithm 2 Three-splitting BCD for DNN training

Samples:X ∈ Rd×n ,Y ∈ Rk×n

Initialization: {W (0)
` ,V (0)

` ,U (0)
` }L

`=1,V
(t)
0 ≡V0 :=X

Hyperparameters: γ > 0, α > 0

for t = 1, . . . do
V (t)

L = argminVL
{sL(VL) +Rn(VL;Y ) + γ

2 ‖VL −U (t−1)
L ‖2F + α

2 ‖VL −V (t−1)
L ‖2F}

U (t)
L = argminUL

{γ
2 ‖V

(t)
L −UL‖2F + γ

2 ‖UL −W (t−1)
L V (t−1)

L−1 ‖2F}
W (t)

L = argminWL
{rL(WL) +

γ
2 ‖U

(t)
L −WLV (t−1)

L−1 ‖2F + α
2 ‖WL −W (t−1)

L ‖2F}
for ` = L − 1, . . . , 1 do

V (t)
` = argminV`

{s`(V`) +
γ
2 ‖V` − σ`(U (t−1)

` )‖2F + γ
2 ‖U

(t)
`+1 −W (t)

`+1V`‖2F}
U (t)

` = argminU`
{γ
2 ‖V

(t)
` −σ`(U`)‖2F + γ

2 ‖U` −W (t−1)
` V (t−1)

`−1 ‖2F + α
2 ‖U` −U (t−1)

` ‖2F}
W (t)

` = argminW`
{r`(W`) +

γ
2 ‖U

(t)
` −W`V (t−1)

`−1 ‖2F + α
2 ‖W` −W (t−1)

` ‖2F}
end for

end for
14
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ASSUMPTIONS OF THE FUNCTIONS FOR CONVERGENCE GUARANTEES

Assumption

Suppose that
(a) the loss function L is a proper lower semicontinuous1 and nonnegative function,
(b) the activation functions σ` (` = 1 . . . ,L − 1) are Lipschitz continuous on any

bounded set,
(c) the regularizers r` and s` (` = 1 . . . ,L − 1) are nonegative lower semicontinuous

convex functions, and
(d) all these functions L, σ`, r` and s` (` = 1 . . . ,L − 1) are either real analytic or

semialgebraic, and continuous on their domains.

1A function f : X → R is called lower semicontinuous if lim infx→x0 f (x) ≥ f (x0) for any x0 ∈ X .
16



Introduction Block Coordinate Descent in Deep Learning Block Coordinate Descent (BCD) Algorithms Global Convergence Analysis Proof Ideas Demonstration

EXAMPLES OF THE FUNCTIONS

Proposition

Examples satisfying Assumption 1 include:
(a) L is the squared, logistic, hinge, or cross-entropy losses;
(b) σ` is ReLU, leaky ReLU, sigmoid, hyperbolic tangent, linear, polynomial, or softplus

activations;
(c) r` and s` are the squared `2 norm, the `1 norm, the elastic net, the indicator function

of some nonempty closed convex set (such as the nonnegative closed half space,
box set or a closed interval [0, 1]), or 0 if no regularization.
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MAIN THEOREM

Theorem

Let {Qt :=
(
{W t

` }L
`=1, {V t

` }L
`=1

)
}t∈N and {Pt :=

(
{W t

` }L
`=1, {V t

` }L
`=1, {U t

`}L
`=1

)
}t∈N be

the sequences generated by Algorithms 1 and 2, respectively. Suppose that Assump-
tion 1 holds, and that one of the following conditions holds: (i) there exists a conver-
gent subsequence {Qtj}j∈N (resp. {P tj}j∈N); (ii) r` is coercive2 for any ` = 1, . . . ,L;
(iii) L (resp. L) is coercive. Then for any α > 0, γ > 0 and any finite initialization Q0

(resp. P0), the following hold
(a) {L(Qt)}t∈N (resp. {L(P t)}t∈N) converges to some L? (resp. L?).
(b) {Qt}t∈N (resp. {P t}t∈N) converges to a critical point of L (resp. L).
(c) 1

T
∑T

t=1 ‖gt‖2F → 0 at the rateO(1/T) where gt ∈ ∂L(Qt).
Similarly, 1

T
∑T

t=1 ‖ḡt‖2F → 0 at the rateO(1/T) where ḡt ∈ ∂L(P t).

2An extended-real-valued function h : Rp → R ∪ {+∞} is called coercive if and only if h(x) → +∞ as
‖x‖ → +∞. 18



Introduction Block Coordinate Descent in Deep Learning Block Coordinate Descent (BCD) Algorithms Global Convergence Analysis Proof Ideas Demonstration

EXTENSIONS

Extensions

1. Prox-linear updates instead of proximal update strategies
2. Residual Networks (ResNets) with skip connections

Global convergence of both extensions are also proved
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PROOF IDEAS

Four key ingredients:

◦ The sufficient descent condition
◦ The relative error condition
◦ The continuity condition of the objective function
◦ The Kurdyka-Łojasiewicz property of the objective function

Establishing the sufficient descent and the relative error conditions require two
kinds of assumptions:

(a) Multiconvexity and differentiability assumptions, and
(b) (Blockwise) Lipschitz differentiability assumption on the unregularized part of

objective function
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PROOF IDEAS

◦ In our cases, the unregularized part of L in two-splitting formulation,

Rn(VL;Y ) +
γ

2

L∑
`=1

‖V` − σ`(W`V`−1)‖2F ,

and that of L in three-splitting formulation,

Rn(VL;Y ) +
γ

2

L∑
`=1

[
‖V` − σ`(U`)‖2F + ‖U` −W`V`−1‖2F

]
usually do NOT satisfy any of assumption (a) and assumption (b)

◦ E.g., when σ` is ReLU or leaky ReLU, the functions ‖V` − σ`(W`V`−1)‖2F and
‖V` − σ`(U`)‖2F are non-differentiable and nonconvex with respect toW`-block
andU`-block, respectively
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PROOF IDEAS

To overcome these challenges:

(i) Exploit the proximal strategies for all the non-strongly convex subproblems to
cheaply obtain the desired sufficient descent property

(ii) Take advantage of the Lipschitz continuity of the activations as well as the
specific splitting formulations to yield the desired relative error property
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SUMMARY OF THEORETICAL RESULTS OF THIS PAPER

Theoretical Results

1. Global convergence to a critical point at a rate ofO(1/T), where T is the number
of iterations

2. Further, if the initialization is sufficiently close to some global minimum of L or
L, then both the sequences generated by Algorithms 1 and 2 converges to their
corresponding global minima

3. Comparison with the convergence of SGD/stochastic subgradient method:
◦ BCD: Global (whole sequence) convergence
◦ SGD (Davis et al., 2019): Subsequence convergence

[Davis et al., Stochastic subgradient method converges on tame functions, FOCM (2019)] 24
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DEMONSTRATION

◦ 10-class classification for the MNIST handwritten digit (0–9) dataset
(with 60K training samples; 10K test samples)

◦ Fully-connected neural network (MLP)
◦ 10 hidden layers
◦ Comparison of training and test accuracies (after 100 epochs)
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Poster #78
Paper: http://proceedings.mlr.press/v97/zeng19a.html

GitHub: https://github.com/timlautk/BCD-for-DNNs-PyTorch

The End
Thank you!
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