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The main result is the following. Consider training 𝐿 hidden layers of a deep neural network, given 𝑛 training data points 
that are non-degenerate, meaning their pairwise relative distance is at least 𝛿. Suppose the network is 
overparameterized, meaning the number of neurons is polynomial in 𝑛, 𝐿 and 𝛿−1.

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1
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Then, we proved stochastic gradient descent can find global minima in polynomial time by training only hidden layers. 

Main Theorem
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Similar results also hold for other losses and other network architectures such as ResNet and CNN. 
These can be found in the paper.

Main Theorem

In paper: 
• also for other smooth losses (cross-entropy, etc)
• also for other architectures (ResNet, CNN, etc)
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Our first key message is the following. Our theorem is obtained by training 
with respect to hidden layers, where prior work [Daniely, NeurIPS 2017] 
studies training essentially only the last layer, which is an easy convex problem.

samples 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑
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Our second key message is the following. We prove polynomial 
dependence on the depth 𝐿. In contrast,
• The independent work [Du et al. ICML 19] needs exponential time in 𝐿

• Prior work [Daniely, NeurIPS 17] for training last layer also needs 𝑒𝑂(𝐿)
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Main Theorem

Intrinsically, our polynomial bound is possible because ReLU prevents 
exponential gradient explosion/vanishing, in a provable sense!

(for a sufficiently large region near random initialization)
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Intrinsically, our polynomial bound is possible because ReLU prevents 
exponential gradient explosion/vanishing, in a provable sense!

(for a sufficiently large region near random initialization)

In contrast, getting 𝑒𝑂 𝐿 is almost trivial: each hidden weight matrix 𝑊ℓ

has spectral norm 2, so overall 2𝐿. The hard part is proving 𝑝𝑜𝑙𝑦(𝐿).
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The third key message is the following. We prove in the paper, for a sufficiently large neighborhood of the random initialization, the training 
objective is almost convex. 
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This means, if the objective is large, then gradient is large. 
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(after appropriate normalization)
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Also, the objective is sufficiently smooth, meaning that if you move in the negative gradient direction, the objective value can be sufficiently 
decreased. 
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We verified this is true also on real data. Goodfellow et al. [ICLR 2015] also observed this phenomenon but a proof was not known.
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These two main lemmas together imply our main theorem.
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Equivalent View: neural tangent kernel
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If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , for a sufficiently large neighborhood of the random 
initialization, neural networks behave like Neural Tangent Kernel (NTK).

In fact… we proved

Finally,  let us take an alternative view.
If one goes into the paper, we proved the following.  If 𝑚, the number of neurons, is polynomially large, then for a sufficiently large 
neighborhood of the random initialization, neural networks behave nearly identical to the so-called neural tangent kernels, or NTK.
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If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , for a sufficiently large neighborhood of the random 
initialization, neural networks behave like Neural Tangent Kernel (NTK).

• ∇𝐹 𝑊 = 1 ±
1
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• 𝐹 𝑊∗ = 𝐹𝑁𝑇𝐾 𝑊∗ ±
1

𝑚1/6

In fact… we proved

Specifically, this means two things. The gradient behaves like NTK, and the objective behaves like NTK.



Conclusion

If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , within certain initialization and learning rate regime,

Over-parameterized deep networks = Neural Tangent Kernel (NTK).

⟹ networks essentially convex and smooth ⟹ training is EASY

We proved

In other words, we proved that within certain parameter regime, over-parameterized deep neural networks behave nearly the same as NTK. 
Therefore, the training task is essentially convex, so training is easy.
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Note this is not true for other learning rate regimes, and neural networks can be provably more powerful than NTK, see our follow-up work. 

Author Note: for other regimes, neural networks provably more powerful than NTK

See [A-L, 1905.10337], "What Can ResNet Learn Efficiently, Going Beyond Kernels?“
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