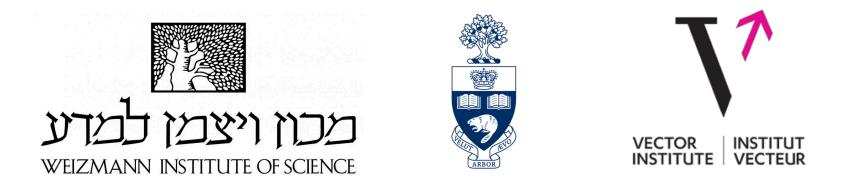
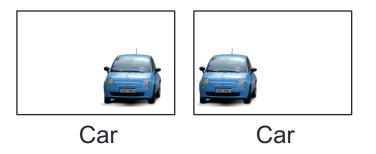
On the Universality of Invariant Networks



Invariant tasks

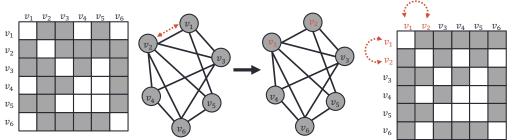
Image classification



Invariant tasks

Image classification

Graph/ hyper-graph classification



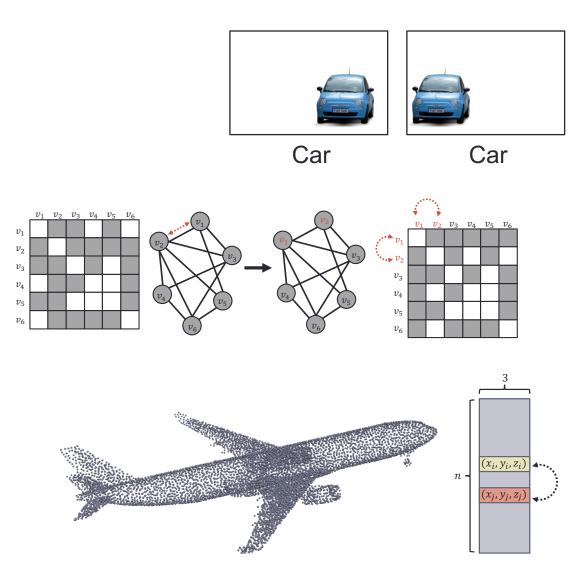
Invariant tasks

Image classification

Graph/ hyper-graph classification

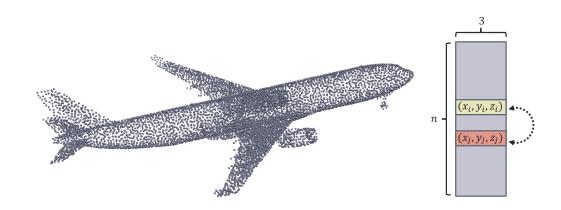
Point-cloud / set classification

• and many more...



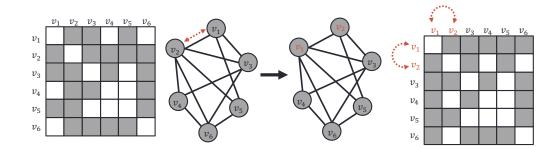
Goal of this paper

- Invariant neural networks are a common approach for these tasks
- This paper analyzes the expressive power of invariant models



Car

Car



Formal definition of group action

• Let $G \leq S_n$

• $g \in G$ acts on a vector $x \in \mathbb{R}^n$ by permuting its coordinates:

 $gx = (x_{g^{-1}(1)}, \dots, x_{g^{-1}(n)})$

Formal definition of group action

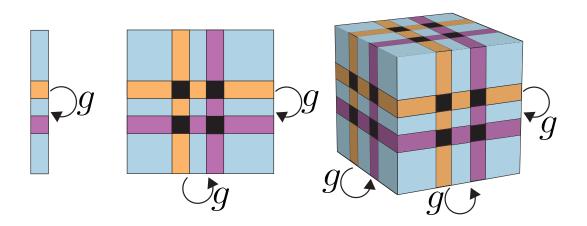
• $g \in G$ acts on a tensor $X \in \mathbb{R}^{n^k}$ by permuting its coordinates in each dimension:

$$(gX)_{i_1,\ldots,i_k}$$

Formal definition of group action

• $g \in G$ acts on a tensor $X \in \mathbb{R}^{n^k}$ by permuting its coordinates in each dimension:

$$(gX)_{i_1,\dots,i_k} = X_{g^{-1}(i_1),\dots,g^{-1}(i_k)}$$



Invariant and equivariant functions

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}$ is **invariant** with respect to a group *G* if:

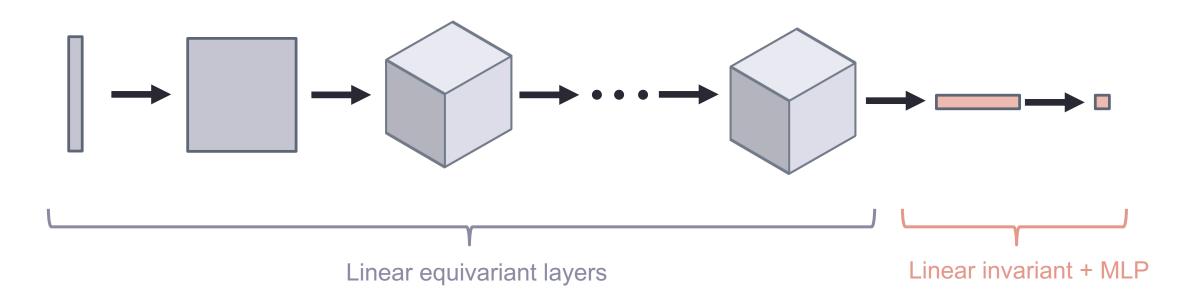
 $f(gx) = f(x), \quad \forall g \in G$

Invariant and equivariant functions

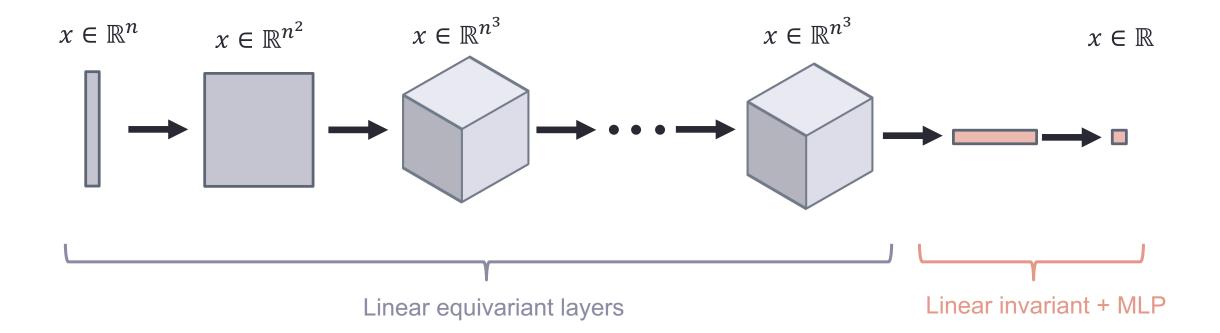
Definition: A function $f: \mathbb{R}^n \to \mathbb{R}$ is **invariant** with respect to a group G if: $f(gx) = f(x), \quad \forall g \in G$

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^n$ is **equivariant** with respect to a group G if: $f(gx) = gf(x), \quad \forall g \in G$

G-invariant networks

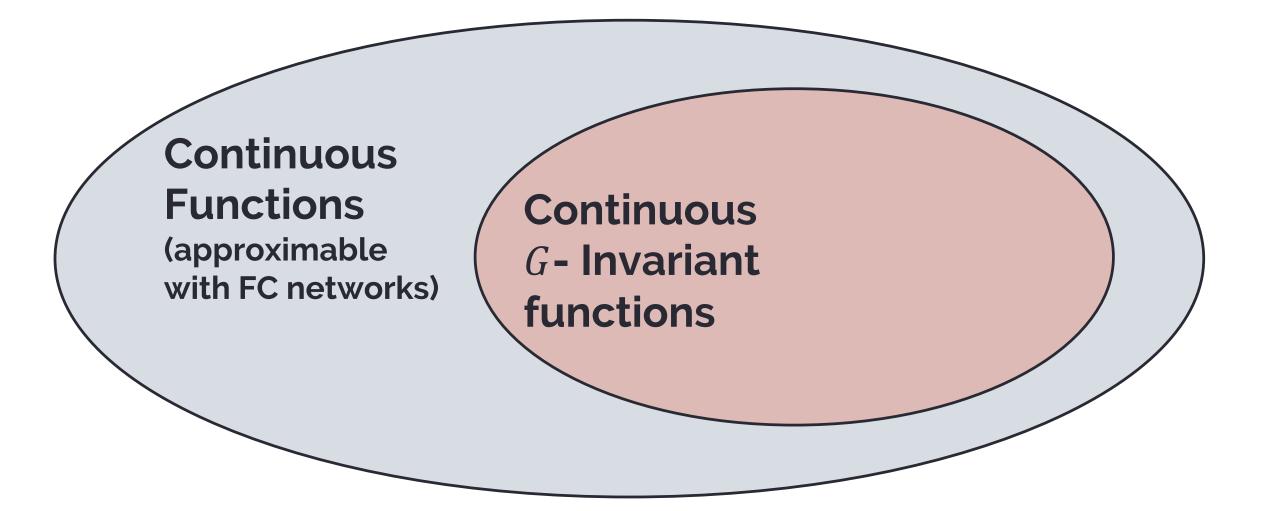


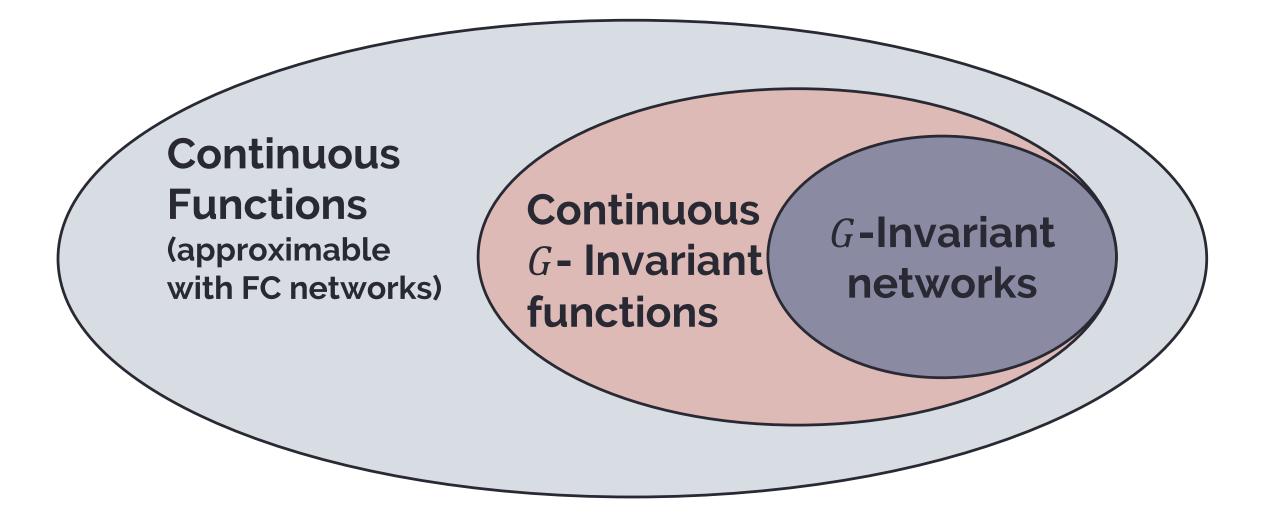
G-invariant networks

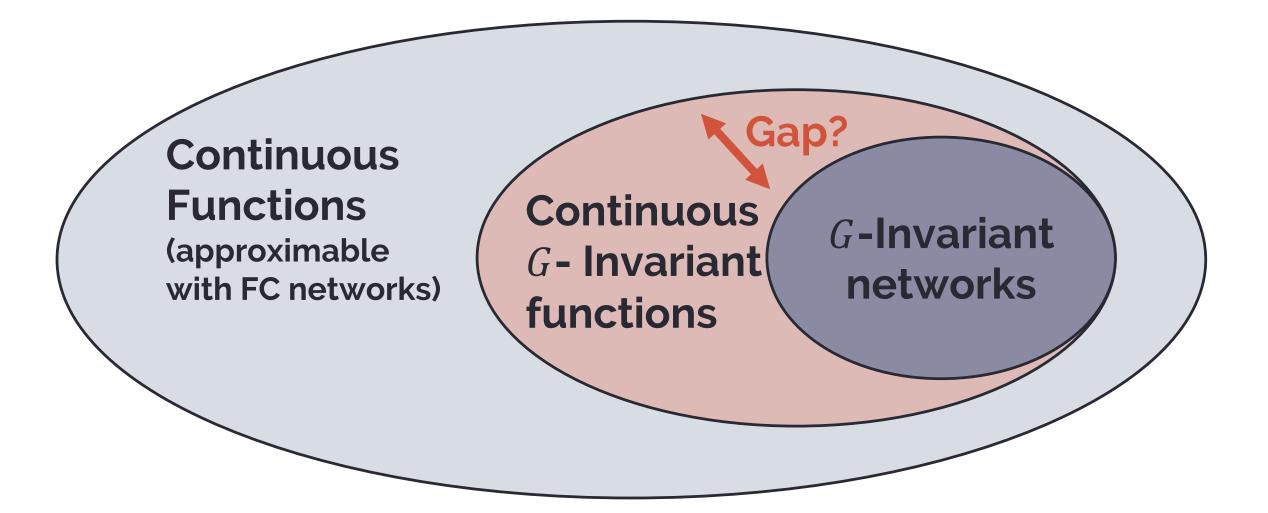


Main question: How expressive are *G*-invariant networks?

Continuous Functions (approximable with FC networks)



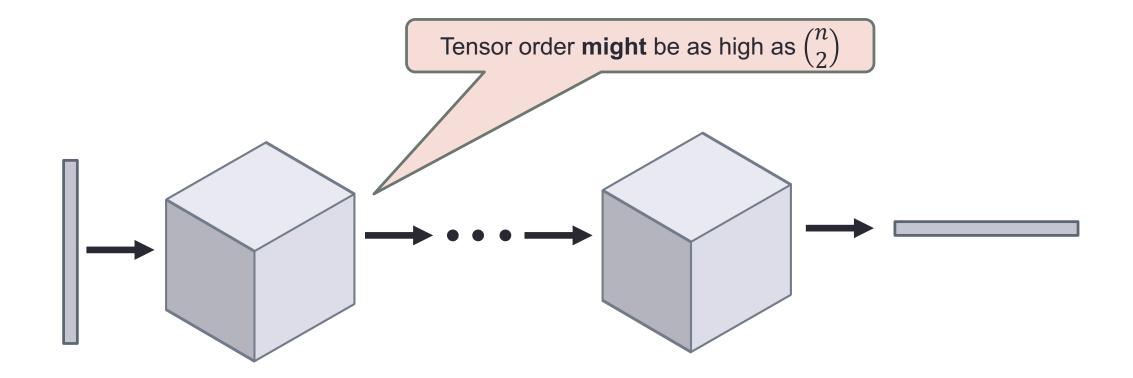




Theoretical results

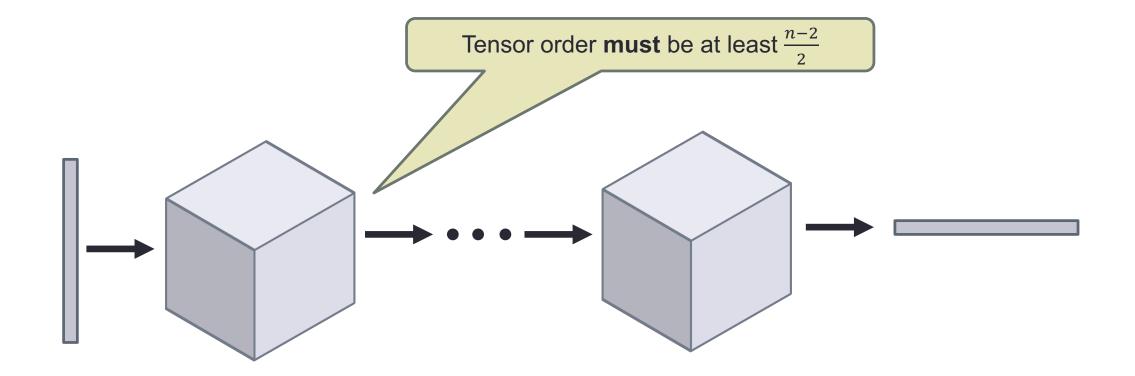
Universality of high-order networks

Theorem 1. *G*-invariant networks are universal.



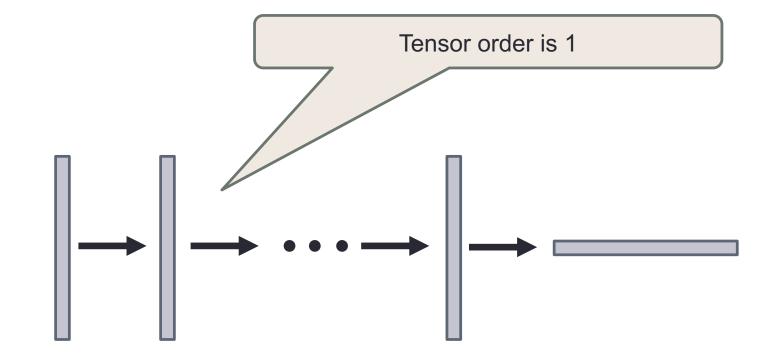
Lower bound on network order

Theorem 2. There exists groups $G \le S_n$ for which the tensor order should be at least O(n) in order to achieve universality



Necessary condition for first order networks

Theorem 3. Let $G \in S_n$. If first order *G*-invariant networks are universal, then $|[n]^2/H| < |[n]^2/G|$ for any strict super-group $G < H \leq S_n$.



The End

- Support
 - ERC Grant (LiftMatch)
 - Israel Science Foundation
- Thanks for listening!

"Invariant Graph Networks"

by Yaron Lipman Saturday 11am, Grand Ballroom B Learning and Reasoning with Graph-Structured Representations workshop

