
Algorithm Configuration:
Learning in the Space of Algorithm Designs

Kevin Leyton-Brown Frank Hutter

University of British Columbia University of Freiburg and
Canada CIFAR AI Chair, Amii Bosch Center for Artificial Intelligence

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

This Tutorial

High-Level Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)

Practical Methods for Algorithm Configuration (Frank)

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (1) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

This Tutorial

Section Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)
Learning in the Space of Algorithm Designs
Defining the Algorithm Configuration Problem

Algorithm Runtime Prediction

Applications and a Case Study

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (2) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Configuration

• Algorithm configuration is a powerful technique at the interface of ML and
optimization
• It makes it possible to approach algorithm design as a machine learning problem
– stop imagining that we have good intuitions about how to approach combinatorial
optimization in practice!

– instead, expose heuristic design choices as parameters, use automatic methods to search for
good configurations

• Many research challenges in the development of methods
• Enormous scope for applications to practical problems

Algorithm Configuration: Leyton-Brown & Hutter (3) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

We should think about algorithm designs as a hypothesis space

Machine learning
Classical approach

• Features based on expert insight
• Model family selected by hand
• Manual tuning of hyperparameters

Deep learning

• Very highly parameterized models, using
expert knowledge to identify appropriate
invariances and model biases (e.g.,
convolutional structure)
• “deep”: many layers of nodes, each
depending on the last
• Use lots of data (plus e.g. dropout
regularization) to avoid overfitting
• Computationally intensive search replaces
human design

Discrete Optimization
Classical approach

• Expert designs a heuristic algorithm
• Iteratively conducts small experiments to
improve the design

Learning in the space of algorithm designs
• Very highly parameterized algorithms
express a combinatorial space of heuristic
design choices that make sense to an
expert
• “deep”: many layers of parameters, each
depending on the last
• Use lots of data to characterize the
distribution of interest
• Computationally intensive search replaces
human design

Algorithm Configuration: Leyton-Brown & Hutter (4) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

We should think about algorithm designs as a hypothesis space

Machine learning
Classical approach

• Features based on expert insight
• Model family selected by hand
• Manual tuning of hyperparameters
Deep learning

• Very highly parameterized models, using
expert knowledge to identify appropriate
invariances and model biases (e.g.,
convolutional structure)
• “deep”: many layers of nodes, each
depending on the last
• Use lots of data (plus e.g. dropout
regularization) to avoid overfitting
• Computationally intensive search replaces
human design

Discrete Optimization
Classical approach

• Expert designs a heuristic algorithm
• Iteratively conducts small experiments to
improve the design

Learning in the space of algorithm designs
• Very highly parameterized algorithms
express a combinatorial space of heuristic
design choices that make sense to an
expert
• “deep”: many layers of parameters, each
depending on the last
• Use lots of data to characterize the
distribution of interest
• Computationally intensive search replaces
human design

Algorithm Configuration: Leyton-Brown & Hutter (4) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

We should think about algorithm designs as a hypothesis space

Machine learning
Classical approach

• Features based on expert insight
• Model family selected by hand
• Manual tuning of hyperparameters
Deep learning

• Very highly parameterized models, using
expert knowledge to identify appropriate
invariances and model biases (e.g.,
convolutional structure)
• “deep”: many layers of nodes, each
depending on the last
• Use lots of data (plus e.g. dropout
regularization) to avoid overfitting
• Computationally intensive search replaces
human design

Discrete Optimization
Classical approach

• Expert designs a heuristic algorithm
• Iteratively conducts small experiments to
improve the design

Learning in the space of algorithm designs
• Very highly parameterized algorithms
express a combinatorial space of heuristic
design choices that make sense to an
expert
• “deep”: many layers of parameters, each
depending on the last
• Use lots of data to characterize the
distribution of interest
• Computationally intensive search replaces
human design

Algorithm Configuration: Leyton-Brown & Hutter (4) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

We should think about algorithm designs as a hypothesis space

Machine learning
Classical approach

• Features based on expert insight
• Model family selected by hand
• Manual tuning of hyperparameters
Deep learning

• Very highly parameterized models, using
expert knowledge to identify appropriate
invariances and model biases (e.g.,
convolutional structure)
• “deep”: many layers of nodes, each
depending on the last
• Use lots of data (plus e.g. dropout
regularization) to avoid overfitting
• Computationally intensive search replaces
human design

Discrete Optimization
Classical approach

• Expert designs a heuristic algorithm
• Iteratively conducts small experiments to
improve the design

Learning in the space of algorithm designs
• Very highly parameterized algorithms
express a combinatorial space of heuristic
design choices that make sense to an
expert
• “deep”: many layers of parameters, each
depending on the last
• Use lots of data to characterize the
distribution of interest
• Computationally intensive search
replaces human design

Algorithm Configuration: Leyton-Brown & Hutter (4) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Approaches that seemed crazy in 2000 make a lot of sense today…

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Moore's Law, 1971–2018
https://en.wikipedia.org/wiki/Transistor_count#Microprocessors

https://github.com/karlrupp/microprocessor-trend-data

Transistors

Clock Speed (KHz)

Algorithm Configuration: Leyton-Brown & Hutter (5) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm design in a world of learnable algorithms

Designers should:

• Shift from choosing heuristics they think will work to exposing a wide variety of
design elements that might be sensible
– This can be integrated into software engineering workflows; see Hoos [2012].

• get out of the business of manual experimentation, leaving this to automated
procedures
– this tutorial focuses mainly on how these automated procedures work

• Reoptimize their designs for new use cases rather than trying to identify a single
algorithm to rule them all

Algorithm Configuration: Leyton-Brown & Hutter (6) – http://bit.ly/ACTutorial

https://dl.acm.org/citation.cfm?id=2076469
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

An example of how this can look: SATenstein
[Khudabukhsh, Xu, Hoos, L-B, 2009; 2016]

• Frankenstein’s goal:
– Create “perfect” human being from scavenged body parts

• SATenstein’s goal: Create high-performance SAT solvers
using components scavenged from existing solvers
– Components drawn from or inspired by existing local search
algorithms for SAT parameters determine which components are
selected and how they behave (41 parameters total)

– designed for use with algorithm configuration (3 levels of conditional
params)

• SATenstein can instantiate:
– at least 29 distinct, high-performance local-search solvers from the
literature

– trillions of novel solver strategies

Algorithm Configuration: Leyton-Brown & Hutter (7) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/download/657/702
https://www.sciencedirect.com/science/article/abs/pii/S0004370215001678
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

SATenstein outperformed the existing state of the art on each of six benchmarks
[Khudabukhsh, Xu, Hoos, L-B, 2016]

0.01

0.1

1

10

100

1000

10000

QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

Pe
na

liz
ed

 A
ve

ra
ge

 R
un

tim
e

(s
)

Configured SATenstein vs 11 "Challengers" on 6 SAT Benchmarks

SATenstein AG20 AG2p AG2+ ANOV G2 GNOV PAWS RANOV RSAPS SAPS VW

Algorithm Configuration: Leyton-Brown & Hutter (8) – http://bit.ly/ACTutorial

https://www.sciencedirect.com/science/article/abs/pii/S0004370215001678
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

This Tutorial

Section Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)
Learning in the Space of Algorithm Designs

Defining the Algorithm Configuration Problem
Algorithm Runtime Prediction

Applications and a Case Study

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (9) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Configuration Visualized

Algorithm Configuration: Leyton-Brown & Hutter (10) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Parameters

Parameter Types

• Continuous, integer, ordinal
• Categorical: finite domain, unordered, e.g., {apple, tomato, pepper}
• Conditional
– allowed values of some child parameter depend on the values taken by parent parameter(s)

Parameters give rise to a structured space of configurations

• These spaces are often huge
– e.g., SAT solver lingeling has 10947 configurations

• Changing one parameter can yield qualitatively different behaviour
• Overall, that’s why we call it algorithm configuration (vs “parameter tuning”)

Algorithm Configuration: Leyton-Brown & Hutter (11) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Configuration: General Definition

Definition (algorithm configuration)
An algorithm configuration problem is a 5-tuple (A, Θ, D, κ̄, m) where:

• A is a parameterized algorithm;
• Θ is the parameter configuration space of A;

• D is a distribution over problem instances with domain Π;

• κ̄ < ∞ is a cutoff time, after which each run of A will be terminated

• m : Θ × Π → R is a function that measures the cost incurred by A(θ) on an
instance π ∈ Π

Optimal configuration θ∗ ∈ arg minθ∈Θ Eπ∼D(m(θ, π)) minimizes expected cost

Algorithm Configuration: Leyton-Brown & Hutter (12) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Configuration: Definition with Runtime Objective

Definition (algorithm configuration)
An algorithm configuration problem is a 5-tuple (A, Θ, D, κ̄, Rκ̄) where:

• A is a parameterized algorithm;
• Θ is the parameter configuration space of A;

• D is a distribution over problem instances with domain Π;

• κ̄ < ∞ is a cutoff time, after which each run of A will be terminated

• Rκ̄ : Θ × Π → R is a function that measures the time it takes to run A(θ) with
cutoff time κ̄ on instance π ∈ Π

Optimal configuration θ∗ ∈ arg minθ∈Θ Eπ∼D(Rκ̄(θ, π)) minimizes expected runtime

Algorithm Configuration: Leyton-Brown & Hutter (12) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Beyond Runtime Optimization

Algorithm configuration methods can also be applied to objectives other than
runtime optimization (though not the focus of this tutorial).

Black-Box Optimization
Optimize a function to which the algorithm only has query access.

Hyperparameter Optimization
Find hyperparameters of a model that minimize validation set loss.

Algorithm Configuration: Leyton-Brown & Hutter (13) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

This Tutorial

Section Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)
Learning in the Space of Algorithm Designs

Defining the Algorithm Configuration Problem

Algorithm Runtime Prediction
Applications and a Case Study

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (14) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Runtime Prediction

A key enabling technology will be the ability to solve the following problem.

A pretty vanilla application of regression?
Predict how long an algorithm will take to run, given:

• A set of instances D

• For each instance i ∈ D, a vector xi of feature values

• For each instance i ∈ D a runtime observation yi We want a mapping f(x) → y

that accurately predicts yi given xi

In other words, find a mapping f(x) → y that accurately predicts yi given xi.

But, is it really possible to use supervised learning to predict the empirical behavior
of an exponential-time algorithm on held-out problem inputs?

Algorithm Configuration: Leyton-Brown & Hutter (15) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Runtime Prediction

A key enabling technology will be the ability to solve the following problem.

A pretty vanilla application of regression?
Predict how long an algorithm will take to run, given:

• A set of instances D

• For each instance i ∈ D, a vector xi of feature values

• For each instance i ∈ D a runtime observation yi We want a mapping f(x) → y

that accurately predicts yi given xi

In other words, find a mapping f(x) → y that accurately predicts yi given xi.

But, is it really possible to use supervised learning to predict the empirical behavior
of an exponential-time algorithm on held-out problem inputs?

Algorithm Configuration: Leyton-Brown & Hutter (15) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Runtime is Surprisingly Predictable

[H, Xu, L-B, Hoos, 2014]
Algorithm Configuration: Leyton-Brown & Hutter (16) – http://bit.ly/ACTutorial

https://www.sciencedirect.com/science/article/pii/S0004370213001082
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

That’s Not All, Folks
[H, Xu, L-B, Hoos, 2014]

We’ve found that that algorithm runtime is consistently predictable, across:

• Four problem domains:
– Satisfiability (SAT)
– Mixed Integer Programming (MIP)
– Travelling Salesman Problem (TSP)
– Combinatorial Auctions

• Dozens of solvers, including:
– state of the art solvers in each domain
– black-box, commercial solvers

• Dozens of instance distributions, including:
– major benchmarks (SAT competitions; MIPLIB; …)
– real-world data (hardware verification, computational sustainability, …)

Algorithm Configuration: Leyton-Brown & Hutter (17) – http://bit.ly/ACTutorial

https://www.sciencedirect.com/science/article/pii/S0004370213001082
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

What About Modeling Algorithm Parameters, Too?

• So far we’ve considered the runtime of single, black box
algorithms

• Our goal in this tutorial is understanding algorithm
performance as a function of an algorithm’s parameters
– with the ultimate aim of optimizing this function

• Can we predict the performance of parameterized
algorithm families?

– Performance is worse than before, but we’re generalizing
simultaneously to unseen problem instances and unseen
parameter configurations

• On average, correct within roughly half an order of magnitude

– Despite discontinuities, an algorithm’s performance is well
approximated by a relatively simple function of its parameters

Modeling Algorithm Families

• So far we’ve considered single, black
box algorithms

• What about parameterized algorithm
families?

• Models can be extended to the sets of
algorithms described by solvers with
parameters that are:
– continuous or discrete
– ordinal or categorical
– potentially conditional on the values of

other parameters

• We call full parameter instantiations
(i.e., runnable algorithms)
configurations

SAT: IBM hw verification data, SPEAR
Random Forest (RMSE=0.43)

MIP: MIPLIB data, CPLEX 12.1 solver

Random Forest (RMSE=0.55)

Actual Runtime

P
re

d
ic

te
d

 R
u

n
ti

m
e

P
re

d
ic

te
d

 R
u

n
ti

m
e

Actual Runtime

Empirical Hardness Models Beyond Worst-Case Analysis Alg Design: Configuration Alg Design: Portfolios Spectrum Repacking

Algorithm Configuration: Leyton-Brown & Hutter (18) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

What About Modeling Algorithm Parameters, Too?

• So far we’ve considered the runtime of single, black box
algorithms

• Our goal in this tutorial is understanding algorithm
performance as a function of an algorithm’s parameters
– with the ultimate aim of optimizing this function

• Can we predict the performance of parameterized
algorithm families?
– Performance is worse than before, but we’re generalizing
simultaneously to unseen problem instances and unseen
parameter configurations
• On average, correct within roughly half an order of magnitude

– Despite discontinuities, an algorithm’s performance is well
approximated by a relatively simple function of its parameters

Modeling Algorithm Families

• So far we’ve considered single, black
box algorithms

• What about parameterized algorithm
families?

• Models can be extended to the sets of
algorithms described by solvers with
parameters that are:
– continuous or discrete
– ordinal or categorical
– potentially conditional on the values of

other parameters

• We call full parameter instantiations
(i.e., runnable algorithms)
configurations

SAT: IBM hw verification data, SPEAR
Random Forest (RMSE=0.43)

MIP: MIPLIB data, CPLEX 12.1 solver

Random Forest (RMSE=0.55)

Actual Runtime

P
re

d
ic

te
d

 R
u

n
ti

m
e

P
re

d
ic

te
d

 R
u

n
ti

m
e

Actual Runtime

Empirical Hardness Models Beyond Worst-Case Analysis Alg Design: Configuration Alg Design: Portfolios Spectrum Repacking

Algorithm Configuration: Leyton-Brown & Hutter (18) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

So, how does it work?

In fact, it’s a somewhat trickier regression problem than initially suggested

• mixed continuous/discrete
• high-dimensional, though often with low effective dimensionality
• very noisy response variable (e.g., exponential runtime distribution)
Plus there are some extra features that will be nice to have

• compatibility with censored observations
• ability to offer uncertainty estimates at test time
We’ve tried a lot of different approaches

• linear/ridge/lasso/polynomial; SVM; MARS; Gaussian processes; deep nets; …
…to date, we’ve had the most success with random forests of regression trees

Algorithm Configuration: Leyton-Brown & Hutter (19) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

It’s most important to get features right. For example, in SAT:

• Problem Size (clauses, variables, clauses/variables, …)

• Syntactic properties (e.g., positive/negative clause ratio)

• Statistics of various constraint graphs
• factor graph
• clause–clause graph
• variable–variable graph

• Knuth’s search space size estimate
• Cumulative # of unit propagations

at different depths

• Local search probing

• Linear programming relaxation

Algorithm Configuration: Leyton-Brown & Hutter (20) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

This Tutorial

Section Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)
Learning in the Space of Algorithm Designs

Defining the Algorithm Configuration Problem

Algorithm Runtime Prediction

Applications and a Case Study

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (21) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Configuration: Many Applications

Applications by Colleagues
• Exam timetabling
• Motion, person

tracking
• RNA sequence-

structure alignment
• Protein Folding

Algorithm Competitions
• SAT, MIP, TSP, AI

planning, ASP, SMT,
timetabling, protein
folding, …

Applications by Others
• Kidney exchange
• Linear algebra

subroutines
• Java garbage

collection
• Computer GO
• Linear algebra

subroutines
• Evolutionary

Algorithms
• ML: Classification

FCC spectrum auction

Mixed integer
programming

Analytics & Optimization

Social gaming

Scheduling and
Resource Allocation

Algorithm Configuration: Leyton-Brown & Hutter (22) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

A Case Study
[L-B, Milgrom & Segal, 2017; Newman, Fréchette & L-B, 2017]

Over 13 months in 2016–17 the FCC held an “incentive auction” to
repurpose radio spectrum from broadcast television to wireless internet

In total, the auction yielded $19.8 billion

• over $10 billion was paid to 175 broadcasters for voluntarily relinquishing their
licenses across 14 UHF channels (84 MHz)
• Stations that continued broadcasting were assigned potentially new channels to
fit as densely as possible into the channels that remained

• The government netted over $7 billion (used to pay down the national debt) after
covering costs

Algorithm Configuration: Leyton-Brown & Hutter (23) – http://bit.ly/ACTutorial

https://www.pnas.org/content/pnas/114/28/7202.full.pdf
https://dl.acm.org/citation.cfm?id=3107548
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Feasibility Testing

• A key subproblem in the auction:
– asking “could station x leave the auction and
go back on-air into the reduced band of
spectrum, alongside all other stations X who
have already done the same?

– about 100K such problems arise per auction
– about 20K are nontrivial

• A hard graph-colouring problem
– 2990 stations (nodes)
– 2.7 million interference constraints (channel-specific interference)
– Initial skepticism about whether this problem could be solved exactly at a national scale

• What happens when we can’t solve an instance:
– Needed a minimum of two price decrements per 8h business day
– each feasibility check was allowed a maximum of one minute
– Treat unsolved problems as infeasible, raising the amount they’re paid

Algorithm Configuration: Leyton-Brown & Hutter (24) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

First, We Need Some Data

• We wrote a full reverse auction simulator (open source)
• Generated valuations by sampling from a model due to Doraszelski et al. [2016]
• Assumptions:
– 84 MHz clearing target
– stations participated when their private value for continuing to broadcast was smaller than
their opening offer for going off-air

– 1 min timeout given to SATFC

• 20 simulated auctions ⇒ 60,057 instances
– 2,711–3,285 instances per auction
– all not solvable by directly augmenting the previous solution
– about 3% of the problems encountered in full simulations

• Our goal: solve problems within a one-minute cutoff

Algorithm Configuration: Leyton-Brown & Hutter (25) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

The Incumbent Solution: MIP Encoding

Algorithm Configuration: Leyton-Brown & Hutter (26) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

What about trying SAT solvers?

Algorithm Configuration: Leyton-Brown & Hutter (27) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Setting Up an Algorithm Design Hypothesis Space

• Choice of complete or local-search solver
– with which solver parameters
• and, depending on solver, conditional subparameters?

• Various problem-specific speedups
(each of which furthermore had parameters of its own)
– reusing previous solutions
– problem decomposition
– caching similar solutions
– removing underconstrained stations

• And further problem-independent heuristics
– constraint propagation preprocessor
– different SAT encodings

Algorithm Configuration: Leyton-Brown & Hutter (28) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Configuration to the Rescue

Algorithm Configuration: Leyton-Brown & Hutter (29) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Portfolios
[L-B, Nudelman, Shoham, 2002-2009; Xu, Hutter, Hoos, L-B, 2007-12]

Often different solvers perform well on different instances

• Idea: build an algorithm portfolio, consisting of different
algorithms that can work together to solve a problem
• SATzilla: state-of-the-art portfolio developed by my group
– machine learning to choose algorithm on a per-instance basis

• Or, just run all the algorithms together in parallel

Hydra: use algorithm configuration to learn a portfolio of
complementary algorithms

• augment an additional portfolio P by targeting instances on
which P performs poorly
• Give the algorithm configuration method a dynamic
performance metric:
– performance of alg s when s outperforms P ; performance of P

otherwise
– Intuitively: s scored for marginal contribution to P

Algorithm Configuration: Leyton-Brown & Hutter (30) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Algorithm Portfolios
[L-B, Nudelman, Shoham, 2002-2009; Xu, Hutter, Hoos, L-B, 2007-12]

Often different solvers perform well on different instances

• Idea: build an algorithm portfolio, consisting of different
algorithms that can work together to solve a problem
• SATzilla: state-of-the-art portfolio developed by my group
– machine learning to choose algorithm on a per-instance basis

• Or, just run all the algorithms together in parallel
Hydra: use algorithm configuration to learn a portfolio of
complementary algorithms

• augment an additional portfolio P by targeting instances on
which P performs poorly
• Give the algorithm configuration method a dynamic
performance metric:
– performance of alg s when s outperforms P ; performance of P

otherwise
– Intuitively: s scored for marginal contribution to P

Algorithm Configuration: Leyton-Brown & Hutter (30) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Performance of the Algorithm Portfolio

Algorithm Configuration: Leyton-Brown & Hutter (31) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Algorithm Design The Problem Runtime Prediction Case Study

Economic Impact of a Stronger Solver

0.0 1.0 2.0 3.0 4.0 5.0
Value Loss (Billions)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

C
os

t (
Bi

llio
ns

)
SATFC
gnovelty+pcl
PicoSAT
Gurobi
Greedy
CPLEX

Algorithm Configuration: Leyton-Brown & Hutter (32) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

This Tutorial

High-Level Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)

Practical Methods for Algorithm Configuration (Frank)

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (33) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

This Tutorial

Section Outline

Practical Methods for Algorithm Configuration (Frank)
Sequential Model-Based Algorithm Configuration (SMAC)
Details on the Bayesian Optimization in SMAC

Other Algorithm Configuration Methods

Case Studies and Evaluation

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (34) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The basic components of algorithm configuration methods

Recall the core of the algorithm configuration definition
Find: θ∗ ∈ arg minθ∈Θ Eπ∼D(m(θ, π)).

The two components of algorithm configuration methods

• How to select a new configuration to evaluate?
• How to compare this configuration to the best so far?

Algorithm Configuration: Leyton-Brown & Hutter (35) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Sequential Model-based AC (SMAC): high-level overview

Algorithm 1: SMAC (high-level overview)

Initialize by executing some runs and collecting their performance data
repeat

Learn a model m̂ from performance data so far: m̂ : Θ × Π → R

Use model m̂ to select promising configurations Θnew

⇝ Bayesian optimization
Compare Θnew against best configuration so far by executing new algorithm runs

until time budget exhausted

Algorithm Configuration: Leyton-Brown & Hutter (36) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Sequential Model-based AC (SMAC): high-level overview

Algorithm 1: SMAC (high-level overview)

Initialize by executing some runs and collecting their performance data
repeat

Learn a model m̂ from performance data so far: m̂ : Θ × Π → R

Use model m̂ to select promising configurations Θnew

⇝ Bayesian optimization

Compare Θnew against best configuration so far by executing new algorithm runs

until time budget exhausted

Algorithm Configuration: Leyton-Brown & Hutter (36) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Sequential Model-based AC (SMAC): high-level overview

Algorithm 1: SMAC (high-level overview)
Initialize by executing some runs and collecting their performance data
repeat

Learn a model m̂ from performance data so far: m̂ : Θ × Π → R

Use model m̂ to select promising configurations Θnew

⇝ Bayesian optimization

Compare Θnew against best configuration so far by executing new algorithm runs
until time budget exhausted

Algorithm Configuration: Leyton-Brown & Hutter (36) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Sequential Model-based AC (SMAC): high-level overview

Algorithm 1: SMAC (high-level overview)
Initialize by executing some runs and collecting their performance data
repeat

Learn a model m̂ from performance data so far: m̂ : Θ × Π → R

Use model m̂ to select promising configurations Θnew ⇝ Bayesian optimization
Compare Θnew against best configuration so far by executing new algorithm runs

until time budget exhausted

Algorithm Configuration: Leyton-Brown & Hutter (36) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Bayesian Optimization

General approach

• Fit a probabilistic model to the collected function
samples ⟨θ, f(θ)⟩

• Use the model to guide optimization, trading off
exploration vs exploitation

Popular in the statistics literature [since Mockus, 1978]

• Efficient in # function evaluations
• Works when objective is nonconvex, noisy, has
unknown derivatives, etc

• Recent convergence results [Srinivas et al, 2010; Bull 2011;
de Freitas et al, 2012; Kawaguchi et al, 2015]

Algorithm Configuration: Leyton-Brown & Hutter (37) – http://bit.ly/ACTutorial

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Bayesian Optimization

General approach

• Fit a probabilistic model to the collected function
samples ⟨θ, f(θ)⟩

• Use the model to guide optimization, trading off
exploration vs exploitation

Popular in the statistics literature [since Mockus, 1978]

• Efficient in # function evaluations
• Works when objective is nonconvex, noisy, has
unknown derivatives, etc

• Recent convergence results [Srinivas et al, 2010; Bull 2011;
de Freitas et al, 2012; Kawaguchi et al, 2015]

Algorithm Configuration: Leyton-Brown & Hutter (37) – http://bit.ly/ACTutorial

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Bayesian Optimization

General approach

• Fit a probabilistic model to the collected function
samples ⟨θ, f(θ)⟩

• Use the model to guide optimization, trading off
exploration vs exploitation

Popular in the statistics literature [since Mockus, 1978]

• Efficient in # function evaluations
• Works when objective is nonconvex, noisy, has
unknown derivatives, etc

• Recent convergence results [Srinivas et al, 2010; Bull 2011;
de Freitas et al, 2012; Kawaguchi et al, 2015]

Algorithm Configuration: Leyton-Brown & Hutter (37) – http://bit.ly/ACTutorial

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Bayesian Optimization

General approach

• Fit a probabilistic model to the collected function
samples ⟨θ, f(θ)⟩

• Use the model to guide optimization, trading off
exploration vs exploitation

Popular in the statistics literature [since Mockus, 1978]

• Efficient in # function evaluations
• Works when objective is nonconvex, noisy, has
unknown derivatives, etc

• Recent convergence results [Srinivas et al, 2010; Bull 2011;
de Freitas et al, 2012; Kawaguchi et al, 2015]

Algorithm Configuration: Leyton-Brown & Hutter (37) – http://bit.ly/ACTutorial

http://link.springer.com/chapter/10.1007%2F3-540-07165-2_55
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Sequential Model-based AC (SMAC): high-level overview

Algorithm 1: SMAC (high-level overview)
Initialize by executing some runs and collecting their performance data
repeat

Learn a model m̂ from performance data so far: m̂ : Θ × Π → R

Use model m̂ to select promising configurations Θnew

⇝ Bayesian optimization with random forests
Compare Θnew against best configuration so far by executing new algorithm runs

⇝ How many instances to evaluate for θ ∈ Θnew?
until time budget exhausted

Algorithm Configuration: Leyton-Brown & Hutter (38) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

How many instances to evaluate per configuration?

Performance on individual instances often does not generalize

• Instance hardness varies (from milliseconds to hours)

• Aim to minimize cost in expectation over instances: c(θ) = Eπ∼D(m(θ, π))

Simplest, suboptimal solution: use N instances for each evaluation

• Treats the problem as a blackbox function optimization problem
• Issue: how large to choose N?
- too small: overtuning (equivalent to over-fitting)
- too large: every function evaluation is slow

Algorithm Configuration: Leyton-Brown & Hutter (39) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

How many instances to evaluate per configuration?

Performance on individual instances often does not generalize

• Instance hardness varies (from milliseconds to hours)

• Aim to minimize cost in expectation over instances: c(θ) = Eπ∼D(m(θ, π))

Simplest, suboptimal solution: use N instances for each evaluation

• Treats the problem as a blackbox function optimization problem
• Issue: how large to choose N?
- too small: overtuning (equivalent to over-fitting)
- too large: every function evaluation is slow

Algorithm Configuration: Leyton-Brown & Hutter (39) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

SMAC’s racing approach: focus on configurations that might beat the incumbent

• Race new configurations against the best known incumbent configuration θ̂

- Use same instances (and seeds) as previously used for θ̂
- Aggressively discard new configuration θ if it performs worse than θ̂ on shared runs

• No requirement for statistical domination
(this would be inefficient since there are exponentially many bad configurations)

• Search component allows to return to θ even if it is discarded based on current runs

- Add more runs for θ̂ over time⇝ build up confidence in θ̂

Observation
Let Θ be finite. Then, the probability that SMAC finds the true optimal parameter
configuration θ∗ ∈ Θ approaches 1 as the number of executed runs goes to infinity.

Algorithm Configuration: Leyton-Brown & Hutter (40) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

SMAC’s racing approach: focus on configurations that might beat the incumbent

• Race new configurations against the best known incumbent configuration θ̂

- Use same instances (and seeds) as previously used for θ̂
- Aggressively discard new configuration θ if it performs worse than θ̂ on shared runs
• No requirement for statistical domination
(this would be inefficient since there are exponentially many bad configurations)

• Search component allows to return to θ even if it is discarded based on current runs

- Add more runs for θ̂ over time⇝ build up confidence in θ̂

Observation
Let Θ be finite. Then, the probability that SMAC finds the true optimal parameter
configuration θ∗ ∈ Θ approaches 1 as the number of executed runs goes to infinity.

Algorithm Configuration: Leyton-Brown & Hutter (40) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

SMAC’s racing approach: focus on configurations that might beat the incumbent

• Race new configurations against the best known incumbent configuration θ̂

- Use same instances (and seeds) as previously used for θ̂
- Aggressively discard new configuration θ if it performs worse than θ̂ on shared runs
• No requirement for statistical domination
(this would be inefficient since there are exponentially many bad configurations)

• Search component allows to return to θ even if it is discarded based on current runs

- Add more runs for θ̂ over time⇝ build up confidence in θ̂

Observation
Let Θ be finite. Then, the probability that SMAC finds the true optimal parameter
configuration θ∗ ∈ Θ approaches 1 as the number of executed runs goes to infinity.

Algorithm Configuration: Leyton-Brown & Hutter (40) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

SMAC’s racing approach: focus on configurations that might beat the incumbent

• Race new configurations against the best known incumbent configuration θ̂

- Use same instances (and seeds) as previously used for θ̂
- Aggressively discard new configuration θ if it performs worse than θ̂ on shared runs
• No requirement for statistical domination
(this would be inefficient since there are exponentially many bad configurations)

• Search component allows to return to θ even if it is discarded based on current runs

- Add more runs for θ̂ over time⇝ build up confidence in θ̂

Observation
Let Θ be finite. Then, the probability that SMAC finds the true optimal parameter
configuration θ∗ ∈ Θ approaches 1 as the number of executed runs goes to infinity.

Algorithm Configuration: Leyton-Brown & Hutter (40) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Saving More Time: Adaptive Capping

When minimizing algorithm runtime,
we can terminate runs for poor configurations θ′ early:

• Is θ′ better than θ?
- Example:

• Can terminate evaluation of θ′ once it is guaranteed to be worse than θ

Observation
Let Θ be finite. Then, the probability that SMAC with adaptive capping finds the
true optimal parameter configuration θ∗ ∈ Θ approaches 1 the number of
executed runs goes to infinity.

Algorithm Configuration: Leyton-Brown & Hutter (41) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Saving More Time: Adaptive Capping

When minimizing algorithm runtime,
we can terminate runs for poor configurations θ′ early:

• Is θ′ better than θ?
- Example:

• Can terminate evaluation of θ′ once it is guaranteed to be worse than θ

Observation
Let Θ be finite. Then, the probability that SMAC with adaptive capping finds the
true optimal parameter configuration θ∗ ∈ Θ approaches 1 the number of
executed runs goes to infinity.

Algorithm Configuration: Leyton-Brown & Hutter (41) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Saving More Time: Adaptive Capping

When minimizing algorithm runtime,
we can terminate runs for poor configurations θ′ early:

• Is θ′ better than θ?
- Example:

• Can terminate evaluation of θ′ once it is guaranteed to be worse than θ

Observation
Let Θ be finite. Then, the probability that SMAC with adaptive capping finds the
true optimal parameter configuration θ∗ ∈ Θ approaches 1 the number of
executed runs goes to infinity.

Algorithm Configuration: Leyton-Brown & Hutter (41) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Sequential Model-based AC (SMAC): summary

Algorithm 1: SMAC
Initialize by executing some runs and collecting their performance data
repeat

Learn a model m̂ from performance data so far: m̂ : Θ × Π → R

Use model m̂ to select promising configurations Θnew

⇝ Bayesian optimization with random forests
Compare Θnew against best configuration so far by executing new algorithm runs

⇝ Aggressive racing and adaptive capping
until time budget exhausted

Algorithm Configuration: Leyton-Brown & Hutter (42) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

All of SMAC’s components matter for performance

Algorithm Configuration: Leyton-Brown & Hutter (43) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

This Tutorial

Section Outline

Practical Methods for Algorithm Configuration (Frank)
Sequential Model-Based Algorithm Configuration (SMAC)

Details on the Bayesian Optimization in SMAC
Other Algorithm Configuration Methods

Case Studies and Evaluation

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (44) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

AC poses many non-standard challenges to Bayesian optimization

Complex parameter space

• High dimensionality (low effective dimensionality) [Wang et al, 2013; Garnett et al., 2013]
• Mixed continuous/discrete parameters [H., 2009; H. et al, 2014]
• Conditional parameters [Swersky et al, 2013; H. & Osborne, 2013; Levesque et al., 2017]

Non-standard noise

• Non-Gaussian noise [Williams et al, 2000; Shah et al, 2018; Martinez-Cantinet al, 2018]

• Heteroscedastic noise [Le et al, Wang & Neal, 2012]

Efficient use in off-the-shelf Bayesian optimization

• Robustness of the model [Malkomes and Garnett, 2018]
• Model overhead [Quiñonero-Candela & Rasmussen, 2005; Bui et al, 2018; H. et al, 2010; Snoek et al, 2015]

We’ll use random forests to address all these; but we need uncertainty estimates

Algorithm Configuration: Leyton-Brown & Hutter (45) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6971/6964
https://arxiv.org/pdf/1310.6740
https://open.library.ubc.ca/media/download/pdf/24/1.0051652/1
https://arxiv.org/pdf/1211.0906
https://ml.informatik.uni-freiburg.de/papers/13-BayesOpt_Arc-Kernel.pdf
https://arxiv.org/pdf/1310.5738
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7965867
https://www.cs.cmu.edu/~andrewgw/tprocess.pdf
https://cs.stanford.edu/~quocle/LeSmoCan05.pdf
https://arxiv.org/pdf/1212.6246
https://papers.nips.cc/paper/7838-automating-bayesian-optimization-with-bayesian-optimization
https://ml.informatik.uni-freiburg.de/papers/10-LION-TB-SPO.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

AC poses many non-standard challenges to Bayesian optimization

Complex parameter space

• High dimensionality (low effective dimensionality) [Wang et al, 2013; Garnett et al., 2013]
• Mixed continuous/discrete parameters [H., 2009; H. et al, 2014]
• Conditional parameters [Swersky et al, 2013; H. & Osborne, 2013; Levesque et al., 2017]

Non-standard noise

• Non-Gaussian noise [Williams et al, 2000; Shah et al, 2018; Martinez-Cantinet al, 2018]

• Heteroscedastic noise [Le et al, Wang & Neal, 2012]

Efficient use in off-the-shelf Bayesian optimization

• Robustness of the model [Malkomes and Garnett, 2018]
• Model overhead [Quiñonero-Candela & Rasmussen, 2005; Bui et al, 2018; H. et al, 2010; Snoek et al, 2015]

We’ll use random forests to address all these; but we need uncertainty estimates

Algorithm Configuration: Leyton-Brown & Hutter (45) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6971/6964
https://arxiv.org/pdf/1310.6740
https://open.library.ubc.ca/media/download/pdf/24/1.0051652/1
https://arxiv.org/pdf/1211.0906
https://ml.informatik.uni-freiburg.de/papers/13-BayesOpt_Arc-Kernel.pdf
https://arxiv.org/pdf/1310.5738
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7965867
https://www.cs.cmu.edu/~andrewgw/tprocess.pdf
https://cs.stanford.edu/~quocle/LeSmoCan05.pdf
https://arxiv.org/pdf/1212.6246
https://papers.nips.cc/paper/7838-automating-bayesian-optimization-with-bayesian-optimization
https://ml.informatik.uni-freiburg.de/papers/10-LION-TB-SPO.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

AC poses many non-standard challenges to Bayesian optimization

Complex parameter space

• High dimensionality (low effective dimensionality) [Wang et al, 2013; Garnett et al., 2013]
• Mixed continuous/discrete parameters [H., 2009; H. et al, 2014]
• Conditional parameters [Swersky et al, 2013; H. & Osborne, 2013; Levesque et al., 2017]

Non-standard noise

• Non-Gaussian noise [Williams et al, 2000; Shah et al, 2018; Martinez-Cantinet al, 2018]

• Heteroscedastic noise [Le et al, Wang & Neal, 2012]

Efficient use in off-the-shelf Bayesian optimization

• Robustness of the model [Malkomes and Garnett, 2018]
• Model overhead [Quiñonero-Candela & Rasmussen, 2005; Bui et al, 2018; H. et al, 2010; Snoek et al, 2015]

We’ll use random forests to address all these; but we need uncertainty estimates

Algorithm Configuration: Leyton-Brown & Hutter (45) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6971/6964
https://arxiv.org/pdf/1310.6740
https://open.library.ubc.ca/media/download/pdf/24/1.0051652/1
https://arxiv.org/pdf/1211.0906
https://ml.informatik.uni-freiburg.de/papers/13-BayesOpt_Arc-Kernel.pdf
https://arxiv.org/pdf/1310.5738
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7965867
https://www.cs.cmu.edu/~andrewgw/tprocess.pdf
https://cs.stanford.edu/~quocle/LeSmoCan05.pdf
https://arxiv.org/pdf/1212.6246
https://papers.nips.cc/paper/7838-automating-bayesian-optimization-with-bayesian-optimization
https://ml.informatik.uni-freiburg.de/papers/10-LION-TB-SPO.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

AC poses many non-standard challenges to Bayesian optimization

Complex parameter space

• High dimensionality (low effective dimensionality) [Wang et al, 2013; Garnett et al., 2013]
• Mixed continuous/discrete parameters [H., 2009; H. et al, 2014]
• Conditional parameters [Swersky et al, 2013; H. & Osborne, 2013; Levesque et al., 2017]

Non-standard noise

• Non-Gaussian noise [Williams et al, 2000; Shah et al, 2018; Martinez-Cantinet al, 2018]

• Heteroscedastic noise [Le et al, Wang & Neal, 2012]

Efficient use in off-the-shelf Bayesian optimization

• Robustness of the model [Malkomes and Garnett, 2018]
• Model overhead [Quiñonero-Candela & Rasmussen, 2005; Bui et al, 2018; H. et al, 2010; Snoek et al, 2015]

We’ll use random forests to address all these; but we need uncertainty estimates
Algorithm Configuration: Leyton-Brown & Hutter (45) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6971/6964
https://arxiv.org/pdf/1310.6740
https://open.library.ubc.ca/media/download/pdf/24/1.0051652/1
https://arxiv.org/pdf/1211.0906
https://ml.informatik.uni-freiburg.de/papers/13-BayesOpt_Arc-Kernel.pdf
https://arxiv.org/pdf/1310.5738
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7965867
https://www.cs.cmu.edu/~andrewgw/tprocess.pdf
https://cs.stanford.edu/~quocle/LeSmoCan05.pdf
https://arxiv.org/pdf/1212.6246
https://papers.nips.cc/paper/7838-automating-bayesian-optimization-with-bayesian-optimization
https://ml.informatik.uni-freiburg.de/papers/10-LION-TB-SPO.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Adaptation of regression trees: storing empirical variance in every leaf

Algorithm Configuration: Leyton-Brown & Hutter (46) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Random Forests with Uncertainty Predictions

• Random forest as a mixture model of T trees [H. et al., 2014]
• Predict with each of the forest’s trees: µt and σ2

t for tree t

• Predictive distribution: N (µ, σ2) with

Another recent variant for uncertainty in random forests: Mondrian forests
[Lakshminarayanan, Roy & Teh, 2015; Lakshminarayanan, Roy & Teh, 2016]

Algorithm Configuration: Leyton-Brown & Hutter (47) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1211.0906
https://papers.nips.cc/paper/5234-mondrian-forests-efficient-online-random-forests.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

A key modification of random forests: sampling split points

• To obtain this split, the split point should be somewhere between L=2, U=5
• Standard: split at mid-point 1

2(L + U) = 3.5

• Now instead: sample split point from Uniform [L,U]

Algorithm Configuration: Leyton-Brown & Hutter (48) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

A key modification of random forests: sampling split points

• To obtain this split, the split point should be somewhere between L=2, U=5
• Standard: split at mid-point 1

2(L + U) = 3.5

• Now instead: sample split point from Uniform [L,U]

Algorithm Configuration: Leyton-Brown & Hutter (48) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Random forests with better uncertainty estimates

• Sampling split points is crucial to obtain smooth uncertainty estimates

1000 trees, min. number of points per leaf = 1; with bootstrapping

Algorithm Configuration: Leyton-Brown & Hutter (49) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Random forests with better uncertainty estimates

• Sampling split points is crucial to obtain smooth uncertainty estimates

1000 trees, min. number of points per leaf = 1; without bootstrapping

Algorithm Configuration: Leyton-Brown & Hutter (50) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Aggregating Model Predictions Across Multiple Instances

Problem

• Model m̂ : Θ × Π → R predicts for one instance at a time

• We want a model that marginalizes over instances: f̂(θ) = Eπ∼D(m̂(θ, π))

Solution

• Intuition: predict for each instance and then average
• More efficient implementation in random forests
– Keep track of fraction of instances compatible with each leaf
– Weight the predictions of the leaves accordingly

Algorithm Configuration: Leyton-Brown & Hutter (51) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Bayesian optimization with random forests

Algorithm Configuration: Leyton-Brown & Hutter (52) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Bayesian optimization with censored data

• Terminating poor runs early yields censored data points
⇝ we only know a lower bound for some data points

• Use an EM-style approach to fill in censored values [Schmee & Hahn, 1979; H. et al, 2013]

Algorithm Configuration: Leyton-Brown & Hutter (53) – http://bit.ly/ACTutorial

https://apps.dtic.mil/dtic/tr/fulltext/u2/a069816.pdf
https://arxiv.org/pdf/1310.1947
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Handling of conditional parameters in random forests

• Only split on a parameter if it’s guaranteed to be active in the current node
– Splits higher up in the tree must guarantee parent parameters to have right values

• Empirically, both GPs and RFs have their advantages [Eggensperger et al, 2013]

Algorithm Configuration: Leyton-Brown & Hutter (54) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/13-BayesOpt_EmpiricalFoundation.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Handling of conditional parameters in random forests

• Only split on a parameter if it’s guaranteed to be active in the current node
– Splits higher up in the tree must guarantee parent parameters to have right values

• Empirically, both GPs and RFs have their advantages [Eggensperger et al, 2013]

Algorithm Configuration: Leyton-Brown & Hutter (54) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/13-BayesOpt_EmpiricalFoundation.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Handling of conditional parameters in random forests

• Only split on a parameter if it’s guaranteed to be active in the current node
– Splits higher up in the tree must guarantee parent parameters to have right values

• Empirically, both GPs and RFs have their advantages [Eggensperger et al, 2013]

Algorithm Configuration: Leyton-Brown & Hutter (54) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/13-BayesOpt_EmpiricalFoundation.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Computational efficiency of random forests and standard Gaussian processes

Computational complexity for N data points (and T trees in a forest)
Random forests Standard GPs

Training O(TN log2 N) O(N3)
Prediction O(T log N) O(N2)

Empirical scaling of runtime with the number of data points:

Algorithm Configuration: Leyton-Brown & Hutter (55) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Scaling with high dimensions (low effective dimensionality)

2 important dimensions (Branin test function)
+ additional unimportant dimensions, following Wang et al [2013]

Algorithm Configuration: Leyton-Brown & Hutter (56) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6971/6964
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

This Tutorial

Section Outline

Practical Methods for Algorithm Configuration (Frank)
Sequential Model-Based Algorithm Configuration (SMAC)

Details on the Bayesian Optimization in SMAC

Other Algorithm Configuration Methods
Case Studies and Evaluation

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (57) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

There are many continuous blackbox optimization methods

• Evolutionary strategies, e.g., CMA-ES [Hansen & Ostermeier, 2001; Hansen, 2016]

– Strong results for continuous hyperparameter optimization [Friedrichs & Igel, 2004], especially with
parallel resources [Loshchilov & H., 2016]

– Also strong results for optimizing NN parameters, especially when only approximate gradients
are available (RL) [Salimans et al, 2017; Conti et al, 2018, Chrabaszcz et al, 2018]

• Differential evolution [Storn and Price, 1997]

• Particle swarm optimization [Kennedy & Eberhart, 1995]

⇝ For continuous parameter spaces, these could be used instead of Bayesian
optimization

Algorithm Configuration: Leyton-Brown & Hutter (58) – http://bit.ly/ACTutorial

http://www.cmap.polytechnique.fr/~nikolaus.hansen/cmaartic.pdf
https://arxiv.org/pdf/1604.00772
https://christian-igel.github.io/paper/EToMSSVMP-NC.pdf
https://openreview.net/pdf?id=xnrA4qzmPu1m7RyVi38Z
https://arxiv.org/pdf/1703.03864
https://arxiv.org/pdf/1712.06560
https://www.ijcai.org/proceedings/2018/0197.pdf
https://www.researchgate.net/publication/227242104_Differential_Evolution_-_A_Simple_and_Efficient_Heuristic_for_Global_Optimization_over_Continuous_Spaces
https://ieeexplore.ieee.org/document/488968
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

There are many approaches for model selection

• E.g., Hoeffding races [Maron & Moore, 1993]

• To compare a set of configurations (or algorithms):
– Use Hoeffding’s bound to compute a confidence band for each configuration
– Stop evaluating configuration when its lower bound is above another’s upper bound

Algorithm Configuration: Leyton-Brown & Hutter (59) – http://bit.ly/ACTutorial

https://papers.nips.cc/paper/841-hoeffding-races-accelerating-model-selection-search-for-classification-and-function-approximation.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

There are many approaches for model selection

• E.g., Hoeffding races [Maron & Moore, 1993]

• To compare a set of configurations (or algorithms):
– Use Hoeffding’s bound to compute a confidence band for each configuration
– Stop evaluating configuration when its lower bound is above another’s upper bound

Algorithm Configuration: Leyton-Brown & Hutter (59) – http://bit.ly/ACTutorial

https://papers.nips.cc/paper/841-hoeffding-races-accelerating-model-selection-search-for-classification-and-function-approximation.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

F-race and Iterated F-race

F-race [Birattari et al, 2002]

• Similar idea as Hoeffding races
• But uses a statistical test instead to check whether θ is inferior
- Namely, the F-test, followed by pairwise t-tests

Iterated F-Race [López-Ibáñez et al, 2016]

• Maintain a probability distribution over which configurations are good
• Sample k configurations from that distribution & race them with F-race

• Update distributions with the results of the race

⇝ Focus on solution quality optimization

Algorithm Configuration: Leyton-Brown & Hutter (60) – http://bit.ly/ACTutorial

https://dl.acm.org/citation.cfm?id=2955491.2955494
https://www.sciencedirect.com/science/article/pii/S2214716015300270
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Initialisation)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Initialisation)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Local Search)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Local Search)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Perturbation)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Local Search)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Local Search)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Local Search)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

?

Selection (using Acceptance Criterion)

Animation credit: Holger Hoos

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Perturbation)

Animation credit: Holger Hoos

ParamILS predates SMAC; aggressive racing & adaptive capping originate here

Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

The ParamILS Framework

Iterated local search in parameter configuration space [H. et al, 2007; H. et al, 2009]

(Perturbation)

Animation credit: Holger Hoos

ParamILS predates SMAC; aggressive racing & adaptive capping originate here
Algorithm Configuration: Leyton-Brown & Hutter (61) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
http://aad.informatik.uni-freiburg.de/papers/09-JAIR-ParamILS.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Gender-based Genetic Algorithm (GGA) [Ansotegui et al, 2009]

Genetic algorithm:

• Population of individuals as genomes (i.e., solution candidates)
• Modify population by
– Mutations (i.e., random changes)
– Crossover (i.e., combination of 2 parents to form an offspring)

Genetic algorithm for algorithm configuration

• Genome = parameter configuration
• Crossover: Combine 2 configurations to form a new configuration

Two genders in the population (competitive and non-competitive)

• Selection pressure only on one gender
• Preserves diversity of the population

Algorithm Configuration: Leyton-Brown & Hutter (62) – http://bit.ly/ACTutorial

https://www.researchgate.net/publication/221632672_A_Gender-Based_Genetic_Algorithm_for_the_Automatic_Configuration_of_Algorithms
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Gender-based Genetic Algorithm (GGA) [Ansotegui et al, 2009]

Genetic algorithm:

• Population of individuals as genomes (i.e., solution candidates)
• Modify population by
– Mutations (i.e., random changes)
– Crossover (i.e., combination of 2 parents to form an offspring)

Genetic algorithm for algorithm configuration

• Genome = parameter configuration
• Crossover: Combine 2 configurations to form a new configuration

Two genders in the population (competitive and non-competitive)

• Selection pressure only on one gender
• Preserves diversity of the population

Algorithm Configuration: Leyton-Brown & Hutter (62) – http://bit.ly/ACTutorial

https://www.researchgate.net/publication/221632672_A_Gender-Based_Genetic_Algorithm_for_the_Automatic_Configuration_of_Algorithms
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Gender-based Genetic Algorithm (GGA) [Ansotegui et al, 2009]

Genetic algorithm:

• Population of individuals as genomes (i.e., solution candidates)
• Modify population by
– Mutations (i.e., random changes)
– Crossover (i.e., combination of 2 parents to form an offspring)

Genetic algorithm for algorithm configuration

• Genome = parameter configuration
• Crossover: Combine 2 configurations to form a new configuration

Two genders in the population (competitive and non-competitive)

• Selection pressure only on one gender
• Preserves diversity of the population

Algorithm Configuration: Leyton-Brown & Hutter (62) – http://bit.ly/ACTutorial

https://www.researchgate.net/publication/221632672_A_Gender-Based_Genetic_Algorithm_for_the_Automatic_Configuration_of_Algorithms
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

GGA: Racing and Capping

Can exploit parallel resources

• Evaluate population members in parallel
• Adaptive capping: can stop when the first k succeed

Use N instances to evaluate configurations

• Increase N in each generation

• Linear increase from Nstart to Nend

Algorithm Configuration: Leyton-Brown & Hutter (63) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

GGA: Racing and Capping

Can exploit parallel resources

• Evaluate population members in parallel
• Adaptive capping: can stop when the first k succeed

Use N instances to evaluate configurations

• Increase N in each generation

• Linear increase from Nstart to Nend

Algorithm Configuration: Leyton-Brown & Hutter (63) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

This Tutorial

Section Outline

Practical Methods for Algorithm Configuration (Frank)
Sequential Model-Based Algorithm Configuration (SMAC)

Details on the Bayesian Optimization in SMAC

Other Algorithm Configuration Methods

Case Studies and Evaluation

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (64) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a SAT Solver for Verification [H. et al, FMCAD 2007]

SAT-encoded instances from formal verification

• Software verification [Babić & Hu; CAV ’07]

• IBM bounded model checking [Zarpas; SAT ’05]

State-of-the-art tree search solver for SAT-based verification

• Spear, developed by Domagoj Babić at UBC
• 26 parameters, 8.34 × 1017 configurations

Algorithm Configuration: Leyton-Brown & Hutter (65) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf
https://link.springer.com/chapter/10.1007/978-3-540-73368-3_41
https://link.springer.com/chapter/10.1007/11499107_25
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a SAT Solver for Verification [H. et al, FMCAD 2007]

• Ran ParamILS, 2 days × 10 machines
– On a training set from each of hardware and software verification

• Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Hardware verification:
4.5-fold speedup on average

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
⇝ won QF_BV category in 2007 SMT competition

Algorithm Configuration: Leyton-Brown & Hutter (66) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a SAT Solver for Verification [H. et al, FMCAD 2007]

• Ran ParamILS, 2 days × 10 machines
– On a training set from each of hardware and software verification

• Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Hardware verification:
4.5-fold speedup on average

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
⇝ won QF_BV category in 2007 SMT competition

Algorithm Configuration: Leyton-Brown & Hutter (66) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a SAT Solver for Verification [H. et al, FMCAD 2007]

• Ran ParamILS, 2 days × 10 machines
– On a training set from each of hardware and software verification

• Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Hardware verification:
4.5-fold speedup on average

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
⇝ won QF_BV category in 2007 SMT competition

Algorithm Configuration: Leyton-Brown & Hutter (66) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a SAT Solver for Verification [H. et al, FMCAD 2007]

• Ran ParamILS, 2 days × 10 machines
– On a training set from each of hardware and software verification

• Compared to manually-engineered default
– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r I

B
M

−B
M

C
 (s

)

IBM Hardware verification:
4.5-fold speedup on average

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r S

W
V

 (s
)

Software verification: 500-fold speedup
⇝ won QF_BV category in 2007 SMT competition

Algorithm Configuration: Leyton-Brown & Hutter (66) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a Commercial MIP Solver [H. et al, CPAIOR 2010]

Mixed integer programming (MIP)

min cTx

s.t. Ax ≤ b

xi ∈ Z for i ∈ I

Combines efficiency of solving linear programs
with representational power of integer variables

Commercial MIP Solver CPLEX
• Leading solver for 15 years (at the time)
• Licensed by over 1 000 universities and 1 300 corporations
• 76 parameters, 1047 configurations

Improvements by configuration with ParamILS
• Between 2× and 50× speedups to solve optimally

• Later work with CPLEX team: up to 10 000× speedups
• Reduction of optimality gap: 1.3× to 8.6 ×

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fi
g
.
fo

u
n
d
 b

y
 P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Test

Wildlife corridor instances

Algorithm Configuration: Leyton-Brown & Hutter (67) – http://bit.ly/ACTutorial

https://www.cs.ubc.ca/~H./papers/10-CPAIOR-MIP-Config.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a Commercial MIP Solver [H. et al, CPAIOR 2010]

Mixed integer programming (MIP)

min cTx

s.t. Ax ≤ b

xi ∈ Z for i ∈ I

Combines efficiency of solving linear programs
with representational power of integer variables

Commercial MIP Solver CPLEX
• Leading solver for 15 years (at the time)
• Licensed by over 1 000 universities and 1 300 corporations
• 76 parameters, 1047 configurations

Improvements by configuration with ParamILS
• Between 2× and 50× speedups to solve optimally

• Later work with CPLEX team: up to 10 000× speedups
• Reduction of optimality gap: 1.3× to 8.6 ×

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fi
g
.
fo

u
n
d
 b

y
 P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Test

Wildlife corridor instances

Algorithm Configuration: Leyton-Brown & Hutter (67) – http://bit.ly/ACTutorial

https://www.cs.ubc.ca/~H./papers/10-CPAIOR-MIP-Config.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configuration of a Commercial MIP Solver [H. et al, CPAIOR 2010]

Mixed integer programming (MIP)

min cTx

s.t. Ax ≤ b

xi ∈ Z for i ∈ I

Combines efficiency of solving linear programs
with representational power of integer variables

Commercial MIP Solver CPLEX
• Leading solver for 15 years (at the time)
• Licensed by over 1 000 universities and 1 300 corporations
• 76 parameters, 1047 configurations

Improvements by configuration with ParamILS
• Between 2× and 50× speedups to solve optimally

• Later work with CPLEX team: up to 10 000× speedups
• Reduction of optimality gap: 1.3× to 8.6 ×

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fi
g
.
fo

u
n
d
 b

y
 P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Test

Wildlife corridor instances

Algorithm Configuration: Leyton-Brown & Hutter (67) – http://bit.ly/ACTutorial

https://www.cs.ubc.ca/~H./papers/10-CPAIOR-MIP-Config.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Comparison to CPLEX Tuning Tool [H. et al, CPAIOR 2010]

• CPLEX tuning tool
– Introduced in version 11 (late 2007, after ParamILS)
– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

• ParamILS: anytime algorithm
– At each time step, keeps track of its incumbent

10
4

10
5

10
6

2

4

6

8

Configuration budget [CPU s]

P
e
rf

o
rm

a
n
c
e
 [
C

P
U

 s
]

Default
CPLEX tuning tool

CPLEX on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

CPLEX on SUST instances
Note: lower is better

Algorithm Configuration: Leyton-Brown & Hutter (68) – http://bit.ly/ACTutorial

https://www.cs.ubc.ca/~H./papers/10-CPAIOR-MIP-Config.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Comparison to CPLEX Tuning Tool [H. et al, CPAIOR 2010]

• CPLEX tuning tool
– Introduced in version 11 (late 2007, after ParamILS)
– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

• ParamILS: anytime algorithm
– At each time step, keeps track of its incumbent

10
4

10
5

10
6

2

4

6

8

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

CPLEX on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

CPLEX on SUST instances
Note: lower is better

Algorithm Configuration: Leyton-Brown & Hutter (68) – http://bit.ly/ACTutorial

https://www.cs.ubc.ca/~H./papers/10-CPAIOR-MIP-Config.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Comparison to CPLEX Tuning Tool [H. et al, CPAIOR 2010]

• CPLEX tuning tool
– Introduced in version 11 (late 2007, after ParamILS)
– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

• ParamILS: anytime algorithm
– At each time step, keeps track of its incumbent

10
4

10
5

10
6

2

4

6

8

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

CPLEX on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

CPLEX on SUST instances
Note: lower is better

Algorithm Configuration: Leyton-Brown & Hutter (68) – http://bit.ly/ACTutorial

https://www.cs.ubc.ca/~H./papers/10-CPAIOR-MIP-Config.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

SMAC further improved performance for both of these case studies

AC scenario GGA ParamILS SMAC

CPLEX on CLS 5.36 2.12 1.77
CPLEX on CORLAT 20.47 9.57 5.38
CPLEX on RCW2 63.65 54.09 49.69
CPLEX on Regions200 7.09 3.04 3.09

SPEAR on IBM −− 801.32 775.15
SPEAR on SWV −− 1.26 0.87

Algorithm Configuration: Leyton-Brown & Hutter (69) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

Configurable SAT Solver Competition (CSSC) [H. et al, AIJ 2015]

Annual SAT competition

• Scores SAT solvers by their performance across instances
• Medals for best average performance with solver defaults
• Implicitly highlights solvers with good defaults

Configurable SAT Solver Challenge (CSSC)

• Better reflects an application setting: homogeneous instances
• Can automatically optimize parameters
• Medals for best performance after configuration
– Based on configuration by all of SMAC, ParamILS and GGA

Algorithm Configuration: Leyton-Brown & Hutter (70) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1505.01221
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

CSSC result #1: Solver performance often improved a lot

Algorithm Configuration: Leyton-Brown & Hutter (71) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

CSSC result #2: Automated configuration changed algorithm rankings

Example: random SAT+UNSAT category in 2013

Algorithm Configuration: Leyton-Brown & Hutter (72) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions SMAC Details on BO Other AC Methods Case Studies

CSSC result #3: SMAC yielded larger speedups than ParamILS and GGA

Each dot: performance achieved by the two configurators being compared
for one solver on one benchmark distribution

Algorithm Configuration: Leyton-Brown & Hutter (73) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

High-Level Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)

Practical Methods for Algorithm Configuration (Frank)

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (74) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Algorithm Configuration

• It’s trivial to achieve optimality in the limit
– what makes an algorithm configurator good is finding good configurations quickly

• So far our focus, like most of the literature, has been on empirical performance
• Let’s now consider obtaining meaningful theoretical guarantees about
worst-case running time
– This section follows Kleinberg, L-B & Lucier [2017]
• but uses notation consistent with the rest of this tutorial

Algorithm Configuration: Leyton-Brown & Hutter (75) – http://bit.ly/ACTutorial

https://www.ijcai.org/proceedings/2017/0281.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

Section Outline

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
Technical Setup
Structured Procrastination (the case of few configurations)

Extensions to Structured Procrastination (many configurations and more)

LeapsAndBounds

CapsAndRuns

Structured Procrastination with Confidence

Related Work and Further Reading

Follow along: http://bit.ly/ACTutorial
Algorithm Configuration: Leyton-Brown & Hutter (76) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Problem Definition Redux (Notation you’ll need for this section, slide 1/2)

An algorithm configuration problem is defined by (A, Θ, D, κ̄, R):

• A is a parameterized algorithm
• Θ is the parameter configuration space of A
– We use θ to identify particular configurations

• D is a probability distribution over input instances with domain Π; typically the
uniform distribution over a benchmark set
– We use π to identify (input instance, random seed) pairs, which we call instances

• κ̄ < ∞ is a max cutoff time, after which each run of A will be terminated
• Rκ(θ, π) is the runtime of configuration θ ∈ Θ on instance π, with cutoff time κ

– Rκ(θ) = Eπ∼D[Rκ(θ, π)] denotes expected κ-capped running time of θ

– R(θ) = Rκ̄(θ) denotes expected running time of θ

• κ0 > 0 is the minimum runtime: R(θ, π) ≥ κ0 for all θ and π

Algorithm Configuration: Leyton-Brown & Hutter (77) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Approximately Optimal Configurations (Notation you’ll need for this section, slide 2/2)

Let OPT = minθ{R(θ)}.
Definition (ϵ-Optimality)
Given ϵ > 0, find θ∗ ∈ Θ such that R(θ∗) ≤ (1 + ϵ)OPT.

• If θ’s average running time is driven by a small set of exceedingly bad inputs that
occur very rarely, then we’d need to run θ on many inputs
• Implies worst-case bounds scaling linearly with κ̄ even when OPT ≪ κ̄

We relax our objective by allowing the running time of θ∗ to be capped at some
threshold value κ for a δ fraction of (instance, seed) pairs

Definition ((ϵ, δ)-Optimality)
A configuration θ∗ is (ϵ, δ)-optimal if there exists some threshold κ

for which Rκ(θ∗) ≤ (1 + ϵ)OPT and Prπ∼D
(
R(θ∗, π) > κ

)
≤ δ.

Algorithm Configuration: Leyton-Brown & Hutter (78) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Approximately Optimal Configurations (Notation you’ll need for this section, slide 2/2)

Let OPT = minθ{R(θ)}.
Definition (ϵ-Optimality)
Given ϵ > 0, find θ∗ ∈ Θ such that R(θ∗) ≤ (1 + ϵ)OPT.

• If θ’s average running time is driven by a small set of exceedingly bad inputs that
occur very rarely, then we’d need to run θ on many inputs
• Implies worst-case bounds scaling linearly with κ̄ even when OPT ≪ κ̄

We relax our objective by allowing the running time of θ∗ to be capped at some
threshold value κ for a δ fraction of (instance, seed) pairs

Definition ((ϵ, δ)-Optimality)
A configuration θ∗ is (ϵ, δ)-optimal if there exists some threshold κ

for which Rκ(θ∗) ≤ (1 + ϵ)OPT and Prπ∼D
(
R(θ∗, π) > κ

)
≤ δ.

Algorithm Configuration: Leyton-Brown & Hutter (78) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Existing Approaches

Definition (incumbent-driven)
An algorithm configuration procedure is incumbent-driven if, whenever an
algorithm run is performed, the captime is either κ̄ or (an amount proportional to)
the runtime of a previously performed algorithm run.

Existing algorithm configuration procedures are incumbent driven:
F-race [Birattari et al., 2002], ParamILS [Hutter et al., 2007; 2009], GGA [Ansótegui et al., 2009; 2015], irace
[López-Ibáñez et al., 2016], ROAR and SMAC [Hutter et al., 2011]

Theorem (running time lower bound)
Any (ϵ, δ)-optimal incumbent-driven search procedure has worst-case expected
runtime that scales at least linearly with κ̄.

Algorithm Configuration: Leyton-Brown & Hutter (79) – http://bit.ly/ACTutorial

https://dl.acm.org/ft_gateway.cfm?id=2955494&ftid=1743420&dwn=1&CFID=77711767&CFTOKEN=1321bee580f3dc1f-8680B550-918C-6B16-74D2F4C2061488E6
http://new.aaai.org/Papers/AAAI/2007/AAAI07-183.pdf
https://www.jair.org/index.php/jair/article/download/10628/25415/
https://link.springer.com/chapter/10.1007/978-3-642-04244-7_14
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/download/11435/10765
https://www.sciencedirect.com/science/article/pii/S2214716015300270
https://link.springer.com/chapter/10.1007/978-3-642-25566-3_40
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

Section Outline

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
Technical Setup

Structured Procrastination (the case of few configurations)
Extensions to Structured Procrastination (many configurations and more)

LeapsAndBounds

CapsAndRuns

Structured Procrastination with Confidence

Related Work and Further Reading

Follow along: http://bit.ly/ACTutorial
Algorithm Configuration: Leyton-Brown & Hutter (80) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

• A time management scheme due to Stanford philosopher John Perry
[Perry, 1996; 2011 Ig Nobel Prize in Literature]
– Keep a set of daunting tasks that you procrastinate to avoid, thereby accomplishing other tasks
– Eventually, replace each daunting task with a new task that is even more daunting, and so
complete the first task

• Similarly, the Structured Procrastination algorithm configuration procedure
[Kleinberg, Lucier & L-B, 2017]:
– maintains sets of tasks (for each configuration θ, a queue of runs to perform);
– starts with the easiest tasks (shortest captimes);
– procrastinates when these tasks prove daunting (puts them back on the queue).

Key insight
Only spend a long time running a given configuration on a given instance after
having failed to find any other (configuration, instance) pair that could be
evaluated more quickly.

Algorithm Configuration: Leyton-Brown & Hutter (81) – http://bit.ly/ACTutorial

https://www.chronicle.com/article/How-to-ProcrastinateStill/93959
https://improbable.com/ig/ig-pastwinners.html
https://www.ijcai.org/proceedings/2017/0281.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

• A time management scheme due to Stanford philosopher John Perry
[Perry, 1996; 2011 Ig Nobel Prize in Literature]
– Keep a set of daunting tasks that you procrastinate to avoid, thereby accomplishing other tasks
– Eventually, replace each daunting task with a new task that is even more daunting, and so
complete the first task

• Similarly, the Structured Procrastination algorithm configuration procedure
[Kleinberg, Lucier & L-B, 2017]:
– maintains sets of tasks (for each configuration θ, a queue of runs to perform);
– starts with the easiest tasks (shortest captimes);
– procrastinates when these tasks prove daunting (puts them back on the queue).

Key insight
Only spend a long time running a given configuration on a given instance after
having failed to find any other (configuration, instance) pair that could be
evaluated more quickly.

Algorithm Configuration: Leyton-Brown & Hutter (81) – http://bit.ly/ACTutorial

https://www.chronicle.com/article/How-to-ProcrastinateStill/93959
https://improbable.com/ig/ig-pastwinners.html
https://www.ijcai.org/proceedings/2017/0281.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

• A time management scheme due to Stanford philosopher John Perry
[Perry, 1996; 2011 Ig Nobel Prize in Literature]
– Keep a set of daunting tasks that you procrastinate to avoid, thereby accomplishing other tasks
– Eventually, replace each daunting task with a new task that is even more daunting, and so
complete the first task

• Similarly, the Structured Procrastination algorithm configuration procedure
[Kleinberg, Lucier & L-B, 2017]:
– maintains sets of tasks (for each configuration θ, a queue of runs to perform);
– starts with the easiest tasks (shortest captimes);
– procrastinates when these tasks prove daunting (puts them back on the queue).

Key insight
Only spend a long time running a given configuration on a given instance after
having failed to find any other (configuration, instance) pair that could be
evaluated more quickly.

Algorithm Configuration: Leyton-Brown & Hutter (81) – http://bit.ly/ACTutorial

https://www.chronicle.com/article/How-to-ProcrastinateStill/93959
https://improbable.com/ig/ig-pastwinners.html
https://www.ijcai.org/proceedings/2017/0281.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

For now we consider the case of few configurations; let |Θ| = n

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

– instances randomly sampled from D with randomly sampled seeds
– initial captimes of κ0

2. Calculate approximate expected runtime for each θ

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the θ with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

– it might seem more intuitive to return the configuration with best approximate expected
runtime, but this isn’t statistically stable

Algorithm Configuration: Leyton-Brown & Hutter (82) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

For now we consider the case of few configurations; let |Θ| = n

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

– instances randomly sampled from D with randomly sampled seeds
– initial captimes of κ0

2. Calculate approximate expected runtime for each θ

– zero for configurations on which no runs have yet been performed
– else average runtimes, treating capped runs as though they finished

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the θ with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

– it might seem more intuitive to return the configuration with best approximate expected
runtime, but this isn’t statistically stable

Algorithm Configuration: Leyton-Brown & Hutter (82) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

For now we consider the case of few configurations; let |Θ| = n

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

2. Calculate approximate expected runtime for each θ

– zero for configurations on which no runs have yet been performed
– else average runtimes, treating capped runs as though they finished

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the θ with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

– it might seem more intuitive to return the configuration with best approximate expected
runtime, but this isn’t statistically stable

Algorithm Configuration: Leyton-Brown & Hutter (82) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

For now we consider the case of few configurations; let |Θ| = n

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

2. Calculate approximate expected runtime for each θ

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the θ with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

– We’ll do many other runs before we’ll forecast this to be the easiest task

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

– it might seem more intuitive to return the configuration with best approximate expected
runtime, but this isn’t statistically stable

Algorithm Configuration: Leyton-Brown & Hutter (82) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

For now we consider the case of few configurations; let |Θ| = n

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

2. Calculate approximate expected runtime for each θ

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the θ with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

– We’ll do many other runs before we’ll forecast this to be the easiest task

5. If execution has not yet been interrupted, goto 2

6. Return the configuration that we spent the most total time running
– it might seem more intuitive to return the configuration with best approximate expected
runtime, but this isn’t statistically stable

Algorithm Configuration: Leyton-Brown & Hutter (82) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination

For now we consider the case of few configurations; let |Θ| = n

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

2. Calculate approximate expected runtime for each θ

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the θ with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

– it might seem more intuitive to return the configuration with best approximate expected
runtime, but this isn’t statistically stable

Algorithm Configuration: Leyton-Brown & Hutter (82) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Running Structured Procrastination

The user must specify

• an algorithm configuration problem (A, Θ, D, κ̄, R, κ0);

• a precision ϵ (how far solutions can be from optimal);

• a failure probability ζ (max probability with which guarantees can fail to hold).

The user does not need to specify δ (the fraction of “outlying” instances on which
running times may be capped)

• this parameter is gradually reduced as the algorithm runs

• when the algorithm is stopped, it returns the δ for which it is guaranteed
to have found an (ϵ, δ)-optimal configuration

Algorithm Configuration: Leyton-Brown & Hutter (83) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination: Running Time

Theorem (worst-case running time, few configurations)

For any δ > 0, an execution of the Structured Procrastination algorithm identifies
an (ϵ, δ)-optimal configuration with probability at least 1 − ζ within worst-case
expected time

O

(
n

δϵ2 ln
(

n ln κ̄

ζδϵ2

)
OPT

)
.

Theorem (running time lower bound for few configurations)
Suppose an algorithm configuration procedure is guaranteed to select an
(ϵ, δ)-optimal configuration with probability at least 1

2 . Its worst-case expected
running time must be at least Ω

(
n

δϵ2OPT
)
.

Algorithm Configuration: Leyton-Brown & Hutter (84) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination: Running Time

Theorem (worst-case running time, few configurations)

For any δ > 0, an execution of the Structured Procrastination algorithm identifies
an (ϵ, δ)-optimal configuration with probability at least 1 − ζ within worst-case
expected time

O

(
n

δϵ2 ln
(

n ln κ̄

ζδϵ2

)
OPT

)
.

Theorem (running time lower bound for few configurations)
Suppose an algorithm configuration procedure is guaranteed to select an
(ϵ, δ)-optimal configuration with probability at least 1

2 . Its worst-case expected
running time must be at least Ω

(
n

δϵ2OPT
)
.

Algorithm Configuration: Leyton-Brown & Hutter (84) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination: Running Time

Theorem (worst-case running time, few configurations)

For any δ > 0, an execution of the Structured Procrastination algorithm identifies
an (ϵ, δ)-optimal configuration with probability at least 1 − ζ within worst-case
expected time

O

(
n

δϵ2 ln
(

n ln κ̄

ζδϵ2

)
OPT

)
.

Theorem (running time lower bound for few configurations)
Suppose an algorithm configuration procedure is guaranteed to select an
(ϵ, δ)-optimal configuration with probability at least 1

2 . Its worst-case expected
running time must be at least Ω

(
n

δϵ2OPT
)
.

Algorithm Configuration: Leyton-Brown & Hutter (84) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

Section Outline

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
Technical Setup

Structured Procrastination (the case of few configurations)

Extensions to Structured Procrastination (many configurations and more)
LeapsAndBounds

CapsAndRuns

Structured Procrastination with Confidence

Related Work and Further Reading

Follow along: http://bit.ly/ACTutorial
Algorithm Configuration: Leyton-Brown & Hutter (85) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

The Case of Many Configurations

• We need a different approach if we want to handle infinitely many
configurations—our current guarantees are superlinear in n

– Relax the requirement that we find performance close to that of OPT
– Instead, seek a configuration with performance close to the best that remains after we exclude
the γ fraction of fastest configurations from Θ (call this OPTγ)
• in other words, seek a configuration within the top-performing ⌊1/γ⌋-quantile

Definition ((ϵ, δ, γ)-Optimality)
A configuration θ∗ is (ϵ, δ, γ)-optimal if there exists some threshold κ

for which Rκ(θ∗) ≤ (1 + ϵ)OPTγ and Prπ∼D
(
R(θ∗, π) > κ

)
≤ δ.

Algorithm Configuration: Leyton-Brown & Hutter (86) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Extending Structured Procrastination to Many Configurations

We extend the Structured Procrastination algorithm to seek the best among a
random sample of 1/γ configurations

• It gradually reduces both δ and γ to tighten guarantees
– reduces γ by sampling more configurations
– sets δ = γω

Theorem
For any γ, ω and with δ = γω , an execution of the Structured Procrastination
algorithm identifies an (ϵ, δ, γ)-optimal configuration with probability at least
1 − ζ in worst-case expected time

O

(1
δγϵ2 ln

(ln κ̄

ζδγϵ2

)
OPTγ

)
.

Theorem (running time lower bound for many configurations)
Suppose an algorithm configuration procedure is guaranteed to select an
(ϵ, δ, γ)-optimal configuration with probability at least 1

2 . Its worst-case expected
running time must be at least Ω

(
1

δγϵ2OPTγ

)
.

Algorithm Configuration: Leyton-Brown & Hutter (87) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Extending Structured Procrastination to Many Configurations

Theorem
For any γ, ω and with δ = γω , an execution of the Structured Procrastination
algorithm identifies an (ϵ, δ, γ)-optimal configuration with probability at least
1 − ζ in worst-case expected time

O

(1
δγϵ2 ln

(ln κ̄

ζδγϵ2

)
OPTγ

)
.

Theorem (running time lower bound for many configurations)
Suppose an algorithm configuration procedure is guaranteed to select an
(ϵ, δ, γ)-optimal configuration with probability at least 1

2 . Its worst-case expected
running time must be at least Ω

(
1

δγϵ2OPTγ

)
.

Algorithm Configuration: Leyton-Brown & Hutter (87) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Practical extensions

Theorem (compatibility with Bayesian optimization & local search)
Suppose that half of the configurations sampled in Structured Procrastination are
generated in a way that depends arbitrarily on previous observations. Then
worst-case runtime is increased by at most a factor of 2.

Theorem (linear speedups when parallelized)
Suppose that Structured Procrastination is executed by p processors running in
parallel. Then, provided it is run for a sufficiently long time (linear in p), worst-case
runtime decreases by at least a factor of p − 1.

Algorithm Configuration: Leyton-Brown & Hutter (88) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

Section Outline

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
Technical Setup

Structured Procrastination (the case of few configurations)

Extensions to Structured Procrastination (many configurations and more)

LeapsAndBounds
CapsAndRuns

Structured Procrastination with Confidence

Related Work and Further Reading

Follow along: http://bit.ly/ACTutorial
Algorithm Configuration: Leyton-Brown & Hutter (89) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

LeapsAndBounds

• A second, approximately optimal algorithm configuration technique due to Weisz,
György & Szepesvári [2018]
• Improves on SP’s worst-case performance by:
– removing dependence on κ̄ (replaced with OPT, usually much smaller)
– tightening the worst-case performance bound by a log factor

• Empirically outperforms SP
– based on very limited experiments, but likely true overall

• But is not anytime: requires both ϵ, δ as inputs

Algorithm Configuration: Leyton-Brown & Hutter (90) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1807.00755
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

LeapsAndBounds: How it Works

The algorithm at a glance:

1. Attempt to guess an (initially) low value of OPT
2. Try to find a configuration whose mean is smaller than this guess

– Discard configurations whose mean is large relative to the current guess
– Use fewer samples to estimate mean runtime of configurations with low runtime variance
across instances

3. If none, double the guess and repeat

Algorithm Configuration: Leyton-Brown & Hutter (91) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

LeapsAndBounds: Running Time

Theorem (worst-case running time)

For any ϵ ∈ (0, 1/3), δ ∈ (0, 1), an execution of LeapsAndBounds identifies an
(ϵ, δ)-optimal configuration with probability at least 1 − ζ within worst-case
expected time

O

(
n

δϵ2 ln
(

n lnOPT
ζ

)
OPT

)
.

Structured Procrastination
Compare to Structured Procrastination:

O

(
n

δϵ2 ln
(

n ln κ̄

ζδϵ2

)
OPT

)
.

Algorithm Configuration: Leyton-Brown & Hutter (92) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

LeapsAndBounds: Empirical Performance

972 minisat configurations running on 20,118 nontrivial CNFuzzDD SAT problems
Time to prove (ϵ = 0.2, δ = 0.2)-optimality: SP 1,169 CPU days; L&B 369 CPU days

(ϵ = 0.2, δ = 0.2) [Weisz, György & Szepesvári, 2018]

Algorithm Configuration: Leyton-Brown & Hutter (93) – http://bit.ly/ACTutorial

http://minisat.se
http://fmv.jku.at/cnfuzzdd
https://arxiv.org/pdf/1807.00755
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

LeapsAndBounds: Empirical Performance

972 minisat configurations running on 20,118 nontrivial CNFuzzDD SAT problems
Time to prove (ϵ = 0.2, δ = 0.2)-optimality: SP 1,169 CPU days; L&B 369 CPU days

(ϵ = 0.2, δ = 0.2) [Weisz, György & Szepesvári, 2018]
Algorithm Configuration: Leyton-Brown & Hutter (93) – http://bit.ly/ACTutorial

http://minisat.se
http://fmv.jku.at/cnfuzzdd
https://arxiv.org/pdf/1807.00755
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

Section Outline

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
Technical Setup

Structured Procrastination (the case of few configurations)

Extensions to Structured Procrastination (many configurations and more)

LeapsAndBounds

CapsAndRuns
Structured Procrastination with Confidence

Related Work and Further Reading

Follow along: http://bit.ly/ACTutorial
Algorithm Configuration: Leyton-Brown & Hutter (94) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

CapsAndRuns

• Recent extension to LeapsAndBounds [Weisz, György & Szepesvári, ICML 2019]

– Tue Jun 11th 04:20–04:25 PM Room 103

• Adapts to easy problem instances by eliminating configurations that are
dominated by other configurations
• Also provides an improved bound for non-worst-case instances
– scales with suboptimality gap, R(θ)

R(θ)−OP T , instead of ϵ−1

– dependence on ϵ and δ individually, rather than product ϵδ

• Bounds are also improved by defining (ϵ, δ)-optimality w.r.t. OPTδ/2, the optimal
configuration when capping runs at the δ/2-quantile, rather than OPT

• Still not anytime

Algorithm Configuration: Leyton-Brown & Hutter (95) – http://bit.ly/ACTutorial

http://proceedings.mlr.press/v97/weisz19a.html
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

CapsAndRuns

• Recent extension to LeapsAndBounds [Weisz, György & Szepesvári, ICML 2019]

– Tue Jun 11th 04:20–04:25 PM Room 103

• Adapts to easy problem instances by eliminating configurations that are
dominated by other configurations
• Also provides an improved bound for non-worst-case instances
– scales with suboptimality gap, R(θ)

R(θ)−OP T , instead of ϵ−1

– dependence on ϵ and δ individually, rather than product ϵδ

• Bounds are also improved by defining (ϵ, δ)-optimality w.r.t. OPTδ/2, the optimal
configuration when capping runs at the δ/2-quantile, rather than OPT

• Still not anytime

Algorithm Configuration: Leyton-Brown & Hutter (95) – http://bit.ly/ACTutorial

http://proceedings.mlr.press/v97/weisz19a.html
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

CapsAndRuns: How it Works

Proceeds in two phases:

• Phase 1: Estimate (1 − δ)-quantile of each configuration’s runtime over D

• Phase 2: Estimate mean runtime of each configuration using the quantile from
Phase 1 as captime
• Return configuration with minimum estimated mean

Algorithm Configuration: Leyton-Brown & Hutter (96) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

CapsAndRuns: Empirical Results

972 minisat configurations running on 20,118 nontrivial CNFuzzDD SAT problems
Time to prove (ϵ = 0.05, δ = 0.2)-optimality (CPU days): SP 20,643; L&B 1,451; C&R: 586

(ϵ = 0.05, δ = 0.2) [Weisz, György & Szepesvári, ICML 2019]

Algorithm Configuration: Leyton-Brown & Hutter (97) – http://bit.ly/ACTutorial

http://minisat.se
http://fmv.jku.at/cnfuzzdd
http://proceedings.mlr.press/v97/weisz19a.html
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

Section Outline

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
Technical Setup

Structured Procrastination (the case of few configurations)

Extensions to Structured Procrastination (many configurations and more)

LeapsAndBounds

CapsAndRuns

Structured Procrastination with Confidence
Related Work and Further Reading

Follow along: http://bit.ly/ACTutorial
Algorithm Configuration: Leyton-Brown & Hutter (98) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination with Confidence

• Recent extension to Structured Procrastination [Kleinberg, L-B, Lucier & Graham, arXiv 2019]

• Adapts to easy problem instances by maintaining confidence bounds on each
configuration’s runtime
• Anytime algorithm: δ is gradually refined during the search process
– helpful when user can’t predict the relationship between these parameters and runtime
– also improves performance: by starting with large values of δ, SPC eliminates bad
configurations early on

• SPC’s running time matches (up to log factors) the running time of a hypothetical
“optimality verification procedure” that knows the identity of the optimal
configuration
– i.e., SPC takes about as long to prove (ϵ, δ)-optimality as our hypothetical verification procedure
would need to demonstrate that fact to a skeptic

– When verification is easy, SPC is fast

Algorithm Configuration: Leyton-Brown & Hutter (99) – http://bit.ly/ACTutorial

https://arxiv.org/abs/1902.05454
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Recall: Structured Procrastination

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

2. Calculate approximate expected runtime for each θ

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the i with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

Algorithm Configuration: Leyton-Brown & Hutter (100) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination with Confidence

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

2. Calculate
lower confidence bound on expected runtime
approximate expected runtime for each θ

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the i with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

Algorithm Configuration: Leyton-Brown & Hutter (100) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination with Confidence

1. Initialize a bounded-length queue Qθ of (instance, captime) pairs for each
configuration θ

2. Calculate
lower confidence bound on expected runtime
approximate expected runtime for each θ

3. Choose the task optimistically predicted to be easiest: the (instance, captime)
pair at the head of the queue corresponding to the i with smallest approximate
expected runtime

4. If the task does not complete within its captime, procrastinate:
double the captime and put the task at the tail of Qθ

5. If execution has not yet been interrupted, goto 2
6. Return the configuration that we spent the most total time running

Return the configuration that either solved or attempted the greatest number of instances

Algorithm Configuration: Leyton-Brown & Hutter (100) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Structured Procrastination with Confidence: Empirical Performance

972 minisat configurations running on 20,118 nontrivial CNFuzzDD SAT problems
Time to prove (ϵ = 0.1, δ = 0.2)-optimality: SP 5,150; L&B 680; SPC 150 (CPU days)

100 101 102 103 104

Time to find (ε,δ)-optimal solution (CPU days)
 (ε=0.1)

0.0

0.2

0.4

0.6

0.8

1.0

δ

Structured Procrastination

LeapsAndBounds

Structured Procrastination
with Confidence

[Kleinberg, L-B, Lucier & Graham, 2019]
Algorithm Configuration: Leyton-Brown & Hutter (101) – http://bit.ly/ACTutorial

http://minisat.se
http://fmv.jku.at/cnfuzzdd
https://arxiv.org/abs/1902.05454
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

This Tutorial

Section Outline

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
Technical Setup

Structured Procrastination (the case of few configurations)

Extensions to Structured Procrastination (many configurations and more)

LeapsAndBounds

CapsAndRuns

Structured Procrastination with Confidence

Related Work and Further Reading

Follow along: http://bit.ly/ACTutorial
Algorithm Configuration: Leyton-Brown & Hutter (102) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Related Work: Bandits

• Bandits:
– Optimism in the face of uncertainty [Auer, Cesa-Bianchi & Fischer 2002, Bubeck & Cesa-Bianchi 2012]

– bandits with correlated arms that scale to large experimental design settings [Kleinberg 2006;
Kleinberg, Slivkins & Upfal 2008; Chaudhuri, Freund & Hsu 2009, Bubeck, Munos, Stoltz & Szepesvári 2011,

Srinivas, Krause, Kakade & Seeger 2012, Cesa-Bianchi & Lugosi 2012, Munos 2014]

• However, our runtime minimization objective is crucially different from more
general objective functions targeted in most bandits literature:
– cost of pulling an arm measured in the same units as the minimization objective function
– freedom to set a maximum amount κ we are willing to pay in pulling an arm; if true cost
exceeds κ, we pay only κ but learn only that true cost was higher

• Beyond the assumption that all arms involve the same, fixed cost:
– Variable costs and a fixed overall budget, but no capping [Guha & Munagala 2007,

Tran-Thanh, Chapman, Rogers & Jennings 2012, Badanidiyuru, Kleinberg, & Slivkins 2013]

– The algorithm can specify a maximum cost to be paid when pulling an arm, but never pays less
than that amount [Kandasamy, Dasarathy, Poczos & Schneider 2016]

– Observations are censored if they exceed a given budget [Ganchev, Nevmyvaka, Kearns & Vaughan 2010]

Algorithm Configuration: Leyton-Brown & Hutter (103) – http://bit.ly/ACTutorial

https://link.springer.com/article/10.1023/A:1013689704352
https://arxiv.org/abs/1204.5721
https://dl.acm.org/citation.cfm?id=1109659
https://dl.acm.org/citation.cfm?id=1374475
https://arxiv.org/abs/0903.2851
http://www.jmlr.org/papers/volume12/bubeck11a/bubeck11a.pdf
https://ieeexplore.ieee.org/iel5/18/6185725/06138914.pdf
https://www.sciencedirect.com/science/article/pii/S0022000012000219
https://www.nowpublishers.com/article/Details/MAL-038
https://dl.acm.org/citation.cfm?id=1250807
https://dl.acm.org/citation.cfm?id=2900889
https://dl.acm.org/citation.cfm?id=3164539
https://papers.nips.cc/paper/6592-the-multi-fidelity-multi-armed-bandit.pdf
https://m-cacm.acm.org/magazines/2010/5/87263-censored-exploration-and-the-dark-pool-problem/fulltext
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Setup SP SP Extensions L&B C&R SPC Related Work

Other Important Related Work

• Hyperparameter optimization
– Key initial work [Bergstra, Bardenet, Bengio & Kégl 2011,Thornton, H, Hoos & L-B 2013]

– Hyperband: uses similar theoretical tools [Li, Jamieson, DeSalvo, Rostamizadeh, & Talwalkar 2016]

• Learning-theoretic foundations
– Gupta & Roughgarden [2017]: framed configuration and selection in terms of learning theory
– Sample-efficient, special-purpose algorithms for particular classes of problems
• combinatorial partitioning problems (clustering, max-cut, etc) [Balcan, Nagarajan, Vitercik & White 2017]

• branching strategies in tree search [Balcan, Dick, Sandholm & Vitercik 2018]

• various algorithm selection problems [Balcan, Dick & Vitercik 2018]

Algorithm Configuration: Leyton-Brown & Hutter (104) – http://bit.ly/ACTutorial

https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://dl.acm.org/citation.cfm?id=2487629
http://www.jmlr.org/papers/volume18/16-558/16-558.pdf
https://epubs.siam.org/doi/abs/10.1137/15M1050276
https://arxiv.org/abs/1611.04535
http://proceedings.mlr.press/v80/balcan18a.html
http://ieee-focs.org/FOCS-2018-Papers/pdfs/59f603.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

This Tutorial

High-Level Outline

Introduction, Technical Preliminaries, and a Case Study (Kevin)

Practical Methods for Algorithm Configuration (Frank)

Algorithm Configuration Methods with Theoretical Guarantees (Kevin)

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (105) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

This Tutorial

Section Outline

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)
Parameter Importance
Algorithm Selection

End-to-End Learning of Combinatorial Solvers

Integrating ML and Combinatorial Optimization

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (106) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Global effect of a parameter

• To quantify the global effect of one or more parameters, we can marginalize
predicted performance across all settings of all other parameters [H., Hoos & L-B, 2014]

In regression trees, we can do this efficiently:

Algorithm Configuration: Leyton-Brown & Hutter (107) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Global effect of a parameter

• To quantify the global effect of one or more parameters, we can marginalize
predicted performance across all settings of all other parameters [H., Hoos & L-B, 2014]

In regression trees, we can do this efficiently:

Algorithm Configuration: Leyton-Brown & Hutter (107) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Functional analysis of variance (fANOVA) [H., Hoos & L-B, 2014]

“Main effect” S explains 65% of variance
“Interaction effect” of S&κ explains another 18%

Computing this took milliseconds

• By definition, the variance of predictor f̂

across its domain Θ is:

V = 1
||Θ||

∫
(f̂(θ) − f̂0)2dθ

• Functional ANOVA [Sobol, 1993] decomposes this
variance into components due to each subset
of the parameters N :

V =
∑

U⊂N

VU , where VU = 1
||ΘU ||

∫
f̂2

U (θU)dΘU

Theorem
In regression trees, main effects can be
computed in linear time.

Algorithm Configuration: Leyton-Brown & Hutter (108) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
https://www.researchgate.net/publication/244441883_Sensitivity_Estimates_for_Nonlinear_Mathematical_Models
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Functional analysis of variance (fANOVA) [H., Hoos & L-B, 2014]

“Main effect” S explains 65% of variance
“Interaction effect” of S&κ explains another 18%

Computing this took milliseconds

• By definition, the variance of predictor f̂

across its domain Θ is:

V = 1
||Θ||

∫
(f̂(θ) − f̂0)2dθ

• Functional ANOVA [Sobol, 1993] decomposes this
variance into components due to each subset
of the parameters N :

V =
∑

U⊂N

VU , where VU = 1
||ΘU ||

∫
f̂2

U (θU)dΘU

Theorem
In regression trees, main effects can be
computed in linear time.

Algorithm Configuration: Leyton-Brown & Hutter (108) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
https://www.researchgate.net/publication/244441883_Sensitivity_Estimates_for_Nonlinear_Mathematical_Models
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Functional analysis of variance (fANOVA) [H., Hoos & L-B, 2014]

“Main effect” S explains 65% of variance
“Interaction effect” of S&κ explains another 18%

Computing this took milliseconds

• By definition, the variance of predictor f̂

across its domain Θ is:

V = 1
||Θ||

∫
(f̂(θ) − f̂0)2dθ

• Functional ANOVA [Sobol, 1993] decomposes this
variance into components due to each subset
of the parameters N :

V =
∑

U⊂N

VU , where VU = 1
||ΘU ||

∫
f̂2

U (θU)dΘU

Theorem
In regression trees, main effects can be
computed in linear time.

Algorithm Configuration: Leyton-Brown & Hutter (108) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
https://www.researchgate.net/publication/244441883_Sensitivity_Estimates_for_Nonlinear_Mathematical_Models
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Functional ANOVA example for SAT solver Spear [H., Hoos & L-B, 2014]

• SAT solver Spear:
26 parameters

• Posthoc analysis of data
gathered from optimization
with SMAC

• 93% of variation in runtimes is
due to a single parameter: the
variable selection heuristic.

• Analysis took seconds

Algorithm Configuration: Leyton-Brown & Hutter (109) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment-longversion.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Local parameter importance (LPI): changing each parameter around the incumbent

• What is the local effect of varying one parameter of the incumbent?
– Use relative changes to quantify local parameter importance
– Can also be done based on the predictive model of algorithm performance [Biedenkapp et al, 2018]

Results for Spear on SWV

Algorithm Configuration: Leyton-Brown & Hutter (110) – http://bit.ly/ACTutorial

https://ml.informatik.uni-freiburg.de/papers/18-LION12-CAVE.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Ablation between default and incumbent configuration

• Greedily change the parameter that improves performance most [Fawcett et al. 2013]
– Can also be done based on the predictive model of algorithm performance [Biedenkapp et al, 2017]

Results for Spear on SWV

Algorithm Configuration: Leyton-Brown & Hutter (111) – http://bit.ly/ACTutorial

http://www.cs.ubc.ca/~hoos/Publ/FawHoo13.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14750
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

This Tutorial

Section Outline

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)
Parameter Importance

Algorithm Selection
End-to-End Learning of Combinatorial Solvers

Integrating ML and Combinatorial Optimization

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (112) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Algorithm selection

• In this tutorial, we focussed on finding a single configuration that performs well
on average: arg minθ∈Θ Eπ∼D(m(θ, π))

• We can also learn a function that picks the best configuration θ ∈ Θ or algorithm
a ∈ P per instance π with features Fπ : arg minf :Π→Θ Eπ∼D(m(f(Fπ), π))

Compute
Features Fπ

Instance π
Select Algorithm

f(Fπ) 7→ â
Run â on π

Algorithm
Portfolio P

• There is a rich literature on this algorithm selection problem [L-B et al, 2003 Xu et al, 2008;

Smith-Miles, 2009; Xu et al, 2012; Kotthoff, 2014; Malitsky et al, 2013; Lindauer et al, 2015; Lorregia et al, 2016]

Algorithm Configuration: Leyton-Brown & Hutter (113) – http://bit.ly/ACTutorial

http://www.cs.ubc.ca/~kevinlb/pub.php?u=portfolio-IJCAI.pdf
https://www.jair.org/index.php/jair/article/view/10556/25269
https://www.researchgate.net/publication/220565856_Cross-Disciplinary_Perspectives_on_Meta-Learning_for_Algorithm_Selection
https://www.researchgate.net/publication/301841135_SATzilla2012_Improved_algorithm_selection_based_on_cost-sensitive_classification_models
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2460/2438
https://www.jair.org/index.php/jair/article/view/10955
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12274/11734
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Example SAT Challenge 2012

The VBS (virtual best solver) is an oracle algorithm selector of competition entries.
(pink: algorithm selectors, blue: portfolios, green: single-engine solvers)

Algorithm Configuration: Leyton-Brown & Hutter (114) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Automated construction of portfolios from a single algorithm

• Algorithm Configuration
– Strength: find a single configuration with strong performance for a given cost metric
– Weakness: for heterogeneous instance sets, there is often no configuration that performs great
for all instances

• Algorithm Selection
– Strength: works well for heterogeneous instance sets due to per-instance selection
– Weakness: in standard algorithm selection, the set of algorithms P to choose from typically
only contains a few algorithms

• Putting the two together [Kadioglu et al, 2010; Xu et al, 2010]
– Use algorithm configuration to determine useful configurations
– Use algorithm selection to select from them based on instance characteristics

Algorithm Configuration: Leyton-Brown & Hutter (115) – http://bit.ly/ACTutorial

http://ebooks.iospress.nl/publication/5873
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Warmstarting of algorithm configuration [Lindauer & H., 2018]

• Humans often don’t start from scratch when tuning an algorithm‘s parameters
– They use their previous experience
– E.g., tuning CPLEX for a few applications tells you which parameters tend to be important

• We would also like to make use of previous AC runs on other distributions
– Option 1: initialize from strong previous configurations
– Option 2: reuse the previous models (weighted by how useful they are)
– Combination of 1+2 often works best

• Results
– Can yield large speedups (> 100×) when similar configurations work well
– Does not substantially slow down the search if misleading
– On average: 4× speedups over running SMAC from scratch

Algorithm Configuration: Leyton-Brown & Hutter (116) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17235/15829
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Warmstarting of algorithm configuration [Lindauer & H., 2018]

• Humans often don’t start from scratch when tuning an algorithm‘s parameters
– They use their previous experience
– E.g., tuning CPLEX for a few applications tells you which parameters tend to be important

• We would also like to make use of previous AC runs on other distributions
– Option 1: initialize from strong previous configurations
– Option 2: reuse the previous models (weighted by how useful they are)
– Combination of 1+2 often works best

• Results
– Can yield large speedups (> 100×) when similar configurations work well
– Does not substantially slow down the search if misleading
– On average: 4× speedups over running SMAC from scratch

Algorithm Configuration: Leyton-Brown & Hutter (116) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17235/15829
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Warmstarting of algorithm configuration [Lindauer & H., 2018]

• Humans often don’t start from scratch when tuning an algorithm‘s parameters
– They use their previous experience
– E.g., tuning CPLEX for a few applications tells you which parameters tend to be important

• We would also like to make use of previous AC runs on other distributions
– Option 1: initialize from strong previous configurations
– Option 2: reuse the previous models (weighted by how useful they are)
– Combination of 1+2 often works best

• Results
– Can yield large speedups (> 100×) when similar configurations work well
– Does not substantially slow down the search if misleading
– On average: 4× speedups over running SMAC from scratch

Algorithm Configuration: Leyton-Brown & Hutter (116) – http://bit.ly/ACTutorial

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17235/15829
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

This Tutorial

Section Outline

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)
Parameter Importance

Algorithm Selection

End-to-End Learning of Combinatorial Solvers
Integrating ML and Combinatorial Optimization

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (117) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Categorization of ML for Combinatorial Optimization / Operations Research (OR)

• Recent survey article [Yoshua Bengio, Andrea Lodi and Antoine Prouvost, 2018]

– Define three categories of combinining ML and OR

ML acts alone to solve the problem

ML augments OR with valuable
information

Integrating ML into OR; OR algorithm
repeatedly calls the same model to make

decisions

Algorithm Configuration: Leyton-Brown & Hutter (118) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1811.06128
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

End-to-end learning of algorithms (in general)

Learn a neural network with parameters ϕ that defines an algorithm

• The network’s parameters ϕ are trained to optimize the true objective (or a proxy)

• The network is queried for each action of the algorithm

Examples

• Learning to learn with gradient descent [Andrychowicz et al, 2016] / learning to optimize
[Li & Malik, 2017]: parameterize an update rule for base-level NN parameters w:

wt+1 = wt + g(∇f(wt), ϕ)

• Learning a gradient-free optimizer’s update rule [Chen et al, 2017]

• Learning unsupervised learning rules [Metz et al, 2019]
• AlphaZero [Silver et al, 2018], etc

Algorithm Configuration: Leyton-Brown & Hutter (119) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1606.04474
https://openreview.net/pdf?id=ry4Vrt5gl
https://openreview.net/pdf?id=HkNDsiC9KQ
https://science.sciencemag.org/content/362/6419/1140.full?ijkey=XGd77kI6W4rSc&keytype=ref&siteid=sci
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

End-to-end learning of algorithms (in general)

Learn a neural network with parameters ϕ that defines an algorithm

• The network’s parameters ϕ are trained to optimize the true objective (or a proxy)

• The network is queried for each action of the algorithm

Examples

• Learning to learn with gradient descent [Andrychowicz et al, 2016] / learning to optimize
[Li & Malik, 2017]: parameterize an update rule for base-level NN parameters w:

wt+1 = wt + g(∇f(wt), ϕ)

• Learning a gradient-free optimizer’s update rule [Chen et al, 2017]

• Learning unsupervised learning rules [Metz et al, 2019]
• AlphaZero [Silver et al, 2018], etc

Algorithm Configuration: Leyton-Brown & Hutter (119) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1606.04474
https://openreview.net/pdf?id=ry4Vrt5gl
https://openreview.net/pdf?id=HkNDsiC9KQ
https://science.sciencemag.org/content/362/6419/1140.full?ijkey=XGd77kI6W4rSc&keytype=ref&siteid=sci
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

End-to-end learning of algorithms (in general)

Learn a neural network with parameters ϕ that defines an algorithm

• The network’s parameters ϕ are trained to optimize the true objective (or a proxy)

• The network is queried for each action of the algorithm

Examples

• Learning to learn with gradient descent [Andrychowicz et al, 2016] / learning to optimize
[Li & Malik, 2017]: parameterize an update rule for base-level NN parameters w:

wt+1 = wt + g(∇f(wt), ϕ)

• Learning a gradient-free optimizer’s update rule [Chen et al, 2017]

• Learning unsupervised learning rules [Metz et al, 2019]
• AlphaZero [Silver et al, 2018], etc

Algorithm Configuration: Leyton-Brown & Hutter (119) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1606.04474
https://openreview.net/pdf?id=ry4Vrt5gl
https://openreview.net/pdf?id=HkNDsiC9KQ
https://science.sciencemag.org/content/362/6419/1140.full?ijkey=XGd77kI6W4rSc&keytype=ref&siteid=sci
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

End-to-end learning of combinatorial problems

Learning to solve Euclidean TSP

• Pointer networks [Vinyals et al, 2015]
– RNN to encode TSP instance
– Another RNN with attention-like mechanism to predict probability distribution over next node
– Trained with supervised learning, using optimal solutions to TSP instances

• Reinforcement learning avoids need for optimal solutions
– Train an RNN [Bello et al, 2017] or a graph neural network [Kool et al, 2019]

• Directly predict the permutation [Emami & Ranka, 2018; Nowak et al, 2017]

• Learn a greedy heuristic to choose next node [Dai et al, 2018]

Algorithm Configuration: Leyton-Brown & Hutter (120) – http://bit.ly/ACTutorial

https://papers.nips.cc/paper/5866-pointer-networks
https://arxiv.org/abs/1611.09940
https://openreview.net/pdf?id=ByxBFsRqYm
https://arxiv.org/abs/1805.07010
https://www.researchgate.net/publication/317887406_A_Note_on_Learning_Algorithms_for_Quadratic_Assignment_with_Graph_Neural_Networks
https://arxiv.org/pdf/1704.01665
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

End-to-end learning of combinatorial problems

Learning to solve SAT

• NeuroSAT [Selsam et al, 2019]

– Use permutation invariant graph neural network
– Learn a message passing algorithm for solving new instances

• SATNet [Wang et al, 2019]
– Differentiable approximate MaxSAT solver
– Can be integrated as a component of a deep learning system (e.g., “visual Sudoku”)

• Learning to predict satisfiability [Cameron et al, 2019]

– Even at the phase transition, with 80% accuracy
– Using exchangeable deep networks

Algorithm Configuration: Leyton-Brown & Hutter (121) – http://bit.ly/ACTutorial

https://openreview.net/pdf?id=HJMC_iA5tm
https://arxiv.org/pdf/1905.12149
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

This Tutorial

Section Outline

Beyond Static Configuration: Related Problems and Emerging Directions (Frank)
Parameter Importance

Algorithm Selection

End-to-End Learning of Combinatorial Solvers

Integrating ML and Combinatorial Optimization

Follow along: http://bit.ly/ACTutorial

Algorithm Configuration: Leyton-Brown & Hutter (122) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Categorization of ML for Combinatorial Optimization / Operations Research (OR)

• Recent survey article [Yoshua Bengio, Andrea Lodi and Antoine Prouvost, 2018]

– Defines three categories of combinining ML and OR

ML acts alone to solve the problem

ML augments OR with valuable
information

Integrating ML into OR; OR algorithm
repeatedly calls the same model to make

decisions

Algorithm Configuration: Leyton-Brown & Hutter (123) – http://bit.ly/ACTutorial

https://arxiv.org/pdf/1811.06128
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Learning to make simple decisions online

Dynamic restart policies

• For a randomized algorithm
• Based on an initial observation window of a run, predict whether this run is good
or bad (and thus whether to restart) [Kautz et al, 2002; Horvitz et al, 2001]

Dynamic algorithm portfolios

• Run several algorithms in parallel
• Decide time shares adaptively based on algorithms’ progress
[Carchrae & Beck, 2014; Gagliolo & Schmidhuber, 2006]

Learning in which search nodes to apply primal heuristics

• Primal heuristics can find feasible solutions in branch-and-bound
• Too expensive to apply in every node⇝ learn when to apply [Khalil et al, 2017]

Algorithm Configuration: Leyton-Brown & Hutter (124) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2002/AAAI02-101.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2005.00278.x
ftp://ftp.idsia.ch/pub/juergen/gagliolo-amai837.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Learning to make simple decisions online

Dynamic restart policies

• For a randomized algorithm
• Based on an initial observation window of a run, predict whether this run is good
or bad (and thus whether to restart) [Kautz et al, 2002; Horvitz et al, 2001]

Dynamic algorithm portfolios

• Run several algorithms in parallel
• Decide time shares adaptively based on algorithms’ progress
[Carchrae & Beck, 2014; Gagliolo & Schmidhuber, 2006]

Learning in which search nodes to apply primal heuristics

• Primal heuristics can find feasible solutions in branch-and-bound
• Too expensive to apply in every node⇝ learn when to apply [Khalil et al, 2017]

Algorithm Configuration: Leyton-Brown & Hutter (124) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2002/AAAI02-101.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2005.00278.x
ftp://ftp.idsia.ch/pub/juergen/gagliolo-amai837.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Learning to make simple decisions online

Dynamic restart policies

• For a randomized algorithm
• Based on an initial observation window of a run, predict whether this run is good
or bad (and thus whether to restart) [Kautz et al, 2002; Horvitz et al, 2001]

Dynamic algorithm portfolios

• Run several algorithms in parallel
• Decide time shares adaptively based on algorithms’ progress
[Carchrae & Beck, 2014; Gagliolo & Schmidhuber, 2006]

Learning in which search nodes to apply primal heuristics

• Primal heuristics can find feasible solutions in branch-and-bound
• Too expensive to apply in every node⇝ learn when to apply [Khalil et al, 2017]

Algorithm Configuration: Leyton-Brown & Hutter (124) – http://bit.ly/ACTutorial

https://www.aaai.org/Papers/AAAI/2002/AAAI02-101.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2005.00278.x
ftp://ftp.idsia.ch/pub/juergen/gagliolo-amai837.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Learning to select/switch between algorithms online

Learning to select a sorting algorithm at each node

• Keep track of a state (e.g., length of sequence left to be sorted recursively)
• Choose algorithm to use for subtree based on state using RL [Lagoudakis & Littmann, 2000]

– E.g., QuickSort for long sequences, InsertionSort for short ones

Learning to select branching rules for DPLL in SAT solving

• Keep track of a backtracking state
• Choose branching rule based on state using RL [Lagoudakis & Littmann, 2001]

Algorithm Configuration: Leyton-Brown & Hutter (125) – http://bit.ly/ACTutorial

https://www.researchgate.net/publication/2871654_Algorithm_Selection_using_Reinforcement_Learning/download
https://www.researchgate.net/publication/2361686_Learning_to_Select_Branching_Rules_in_the_DPLL_Procedure_for_Satisfiability
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Parameter control

Adapting algorithm parameters online

• A strict generalization of algorithm configuration
– just pick a fixed setting and never change it

• A strict generalization of per-instance algorithm configuration (PIAC)
– just select configuration once in the beginning per instance, never change

• A strict generalization of algorithm selection (finite set of algorithms P)
– special case of PIAC with one categorical parameter with domain P

Algorithm Configuration: Leyton-Brown & Hutter (126) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Parameter control

Adapting algorithm parameters online

• A strict generalization of algorithm configuration
– just pick a fixed setting and never change it

• A strict generalization of per-instance algorithm configuration (PIAC)
– just select configuration once in the beginning per instance, never change

• A strict generalization of algorithm selection (finite set of algorithms P)
– special case of PIAC with one categorical parameter with domain P

Algorithm Configuration: Leyton-Brown & Hutter (126) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Parameter control

Adapting algorithm parameters online

• A strict generalization of algorithm configuration
– just pick a fixed setting and never change it

• A strict generalization of per-instance algorithm configuration (PIAC)
– just select configuration once in the beginning per instance, never change

• A strict generalization of algorithm selection (finite set of algorithms P)
– special case of PIAC with one categorical parameter with domain P

Algorithm Configuration: Leyton-Brown & Hutter (126) – http://bit.ly/ACTutorial

http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions Param. Importance Algo. Selection End-to-End Integrating ML and Comb. Opt.

Parameter control: a reinforcement learning problem

• Formulation of the single-instance case as an MDP [Adriaensen & Nowe, 2016]

– But a strong policy for a single instance may not generalize

• Formulation of the general problem as a contextual MDP to learn to generalize
across instances [Biedenkapp et al, 2019]

Shared state & action spaces
Different transition and reward functions

First promising results on toy functions

Algorithm Configuration: Leyton-Brown & Hutter (127) – http://bit.ly/ACTutorial

https://www.ijcai.org/Proceedings/16/Papers/085.pdf
http://bit.ly/AlgoConfig

Introduction Practical Theory Related Problems Conclusions

Conclusions

Summary

• Algorithm configuration: learning in the space of algorithm designs
• Practical AC methods are very mature; often able to speed up state-of-the-art
algorithms by orders of magnitude

• Much recent progress on AC with worst-case runtime guarantees; likely to impact
practice soon

• Related problems: parameter importance; algorithm selection; end-to-end
learning; other ways of integrating ML with combinatorial optimization

Further resources

• Code available for SMAC, CAVE (parameter importance), Auto-WEKA, Auto-sklearn
• See http://automl.org for more material; also, we’re hiring: http://automl.org/jobs

Algorithm Configuration: Leyton-Brown & Hutter (128) – http://bit.ly/ACTutorial

https://github.com/automl/SMAC3
https://github.com/automl/CAVE
https://github.com/automl/autoweka
https://github.com/automl/auto-sklearn
http://automl.org
http://automl.org/jobs
http://bit.ly/AlgoConfig

	Introduction, Technical Preliminaries, and a Case Study (Kevin)
	Learning in the Space of Algorithm Designs
	Defining the Algorithm Configuration Problem
	Algorithm Runtime Prediction
	Applications and a Case Study

	Practical Methods for Algorithm Configuration (Frank)
	Sequential Model-Based Algorithm Configuration (SMAC)
	Details on the Bayesian Optimization in SMAC
	Other Algorithm Configuration Methods
	Case Studies and Evaluation

	Algorithm Configuration Methods with Theoretical Guarantees (Kevin)
	Technical Setup
	Structured Procrastination (the case of few configurations)
	Extensions to Structured Procrastination (many configurations and more)
	LeapsAndBounds
	CapsAndRuns
	Structured Procrastination with Confidence
	Related Work and Further Reading

	Beyond Static Configuration: Related Problems and Emerging Directions (Frank)
	Parameter Importance
	Algorithm Selection
	End-to-End Learning of Combinatorial Solvers
	Integrating ML and Combinatorial Optimization

