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Conventional (Passive) Machine Learning
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QUARTZ

Google says its new Al-powered
translation tool scores nearly identically to
human translators

Computers now better than humans at
recognising and sorting images

millions of labeled images

, trained on more texts than a
|000’s of human hours

human could read in a lifetime

Can we train machines with less labeled
data and less human supervision?



Active Machine Learning

Goal: machine automatically
and adaptively selects most
informative data for labeling

l labeled
unlabeled human W data [ machine predictive
raw data labeling J learning model

data selection )
algorithm




Motivating Application

provides labels to machine learner
(several minutes / EHR)



Active Learning

EHR feature 2

®
o © °
o @ ® Non-adaptive strategy: Label a random sample
'0.. ' o ®
" o Active strategy: Label a sample near best
@' ® decision boundary based on labels seen so far
o O
® ““. pest linear classifier
o
®
o ©

EHR feature 1

error rate €

active learning finds optimal
classifier with much less
human supervision!

# labels



Active Logistic Regression

active learning
passive learning

11000 patient records
8000 positive
3000 negative

6182 Numerical Features
icd9 codes
lab tests
patient data

Classification task:
e, Cataracts or healthy

less than half as many labeled
examples needed by active learning



nextml.org



Active learning to optimize crowdsourcing and
rating in New Yorker Cartoon Caption Contest



Actively learning user’s beer preferences



Principles of Active Learning



What and Where Information

p(y|x) 4
Density estimation: What is p(y|x)?
Classification: Where is p(y|x) > 07 T
(x) 1
x
Density estimation: What is p(x)? P
Clustering: Where is p(z) > €7 B .
Elylz] 1

Function estimation: What is E|y|x|?
Bandit optimization: Where is max, E|y|z]?

Active learning is more efficient than passive
learning for localized “where” information



Meta-Algorithm for Active Learning

Version-Space (VS) Active Learning

initialize VS: ‘H = all models/hypotheses

while (stopping-criterion) not met

1. sample at random from available dataset

2. label only th les that distingui
abel only those samples that distinguiysstys

3. reduce H by removing all models incAiCRCIIgiEs
to label

output: best model in final ‘H

bels




Learning a 1-D Classitier

binary search quickly finds decision boundary

passive : efr ~ n 1

active: err ~ 27"



Vapnik-Chervonenkis (VC) Theory

Given training data {(z;,y;)}7_;, learn a function f to predict y from z

Consider a possibly infinite set of hypotheses F with finite VC dimension d
and for each f € F define the risk (error rate):

R(f) = P(f(z) #y)

n

error rate on = 1 y .. C
training data: R(f) — ﬁ Z]l(f(xz) 7’é yz) empirical risk

1=1

dlog(n/é)

n

VC bound:  sup |R(f) — R(f)| < 6\/
feF

w.p. > 1—9



—mpirical

Risk Minimization (

-RM)

Goal: select hypothesis with true error rate within € > 0 of min ;e x R(f)

/o=

)
]

TN g

sufficient number dlog(n/d)
of training examples: 12

argmin R(f) true risk minimizer

feF

feF

L error

f minimizes empirical risk:

arg min F2( f) empirical risk minimizer

n

<. P a=0f

R(f) < R(f*)
< 12\/allog7(:1/5)
dlog(1/6)

=)



—mpirical Risks and Confidence Intervals
o
o 5 o
5 ? i
o i -
1 2 3 K-1 K

hypotheses (ordered according to empirical risks)



—mpirical

Risks and Confidence Intervals

2 3 K-1

hypotheses (ordered according to empirical risks)

more training data = smaller confidence intervals

K



—mpirical Risks and Confidence Intervals

1 2 3 K-1 K

hypotheses (ordered according to empirical risks)

more training data = smaller confidence intervals



RM Is Wasting Labeled Examples

- ; o R(f3)
1 2 3 K-1 K

hypotheses (ordered according to empirical risks)



RM Is Wasting Labeled Examples

at this point we can safely remove

f3 from further consideration o .
:_ 55 o
(E) o and we probably could have removed
i other hypotheses even sooner
1 2 3 K-1 K

hypotheses (ordered according to empirical risks)

only require labels for examples that
hypotheses 1 and 2 label differently
(i.e., examples where they disagree)



Disagreement-

Based Active Learning

consider points uniform on unit ball and
linear classifiers passing through origin

only label points in the
region of disagreement ®




Active Binary Classification

Assuming optimal Bayes classifer f* in VC class with dimension d
and “nice” distributions (e.g., bounded label noise)

passive € ~~ parametric rate

n :
€ ~ exp ( —C E) exponential speed-up

passive

Bayes error rate fmm

R(f7) # labels



Tutorial Outline

Part 1: Introduction to Active Learning (Rob)
Part 2: Theory of Active Learning (Steve)
Part 3. Advanced Topics and Open Problems (Steve)

Part 4: Nonparametric Active Learning (Rob)

slides: http://nowak.ece.wisc.edu/ActiveML.html
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Part 2: Theory of Active Learning
General Case

Disagreement-Based Agnostic Active Learning

Disagreement Coefficient

Sample Complexity Bounds

ICML | 2019
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Agnostic Active Learning



Uniform Bernstein Inequality

VC dimension



Ag n OSt | C ACtlve I—e a r n I n g Balcan, Beygelzimer, & Langford (2006)




Agnostic Active Learning

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}
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Agnostic Active Learning

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Sample Complexity Analysis anneke (2007,.)

) — oy PXDIS(BU )
r>e r




Sample Complexity Analysis




Sample Complexity Analysis

0 ]
i

DIS(B(f*,r)) = [t* —r,t* +7)
Px (DIS(B(f*,7))) = 2r

0 =2



Sample Complexity Analysis

==

tr Py
DIS(B(f*,7)) = [¢* — 1, t* + 1)
Px(DIS(B(f*,7))) = 2r

=0 =2



Sample Complexity Analysis
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Sample Complexity Analysis



Sample Complexity Analysis




Sample Complexity Analysis

Example: homog. linear separators (bias 0),
n dimensions, uniform Px on sphere.



Sample Complexity Analysis

Example: homog. linear separators (bias 0),
n dimensions, uniform Px on sphere.

f e B(f*,r)

f*



Sample Complexity Analysis

Example: homog. linear separators (bias 0),
n dimensions, uniform Px on sphere.

f*
DIS(B(f*,r))



Sample Complexity Analysis

Example: homog. linear separators (bias 0),
n dimensions, uniform Px on sphere.

f*
DIS(B(f*,r))

Some geometry = for small r,
Px(DIS(B(f*,1))) ox y/nr.
= 0 x /n.



Sample Complexity Analysis




Sample Complexity Analysis

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Sample Complexity Analysis

DIS(H) :={x e X :3f, f' e H, f(x) # f(x)}

Bounded noise:

R(f) = R(f") :#J},EP(Y = [H(X)|X) = P(Y # f*(X)|X))dPx
> (1 -28)Px(f # [7)




Sample Complexity Analysis




Sample Complexity Analysis

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Sample Complexity Analysis

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}

Px(f # ) < R(f) + R(f*) =28 + R(f) — R(f")




Sample Complexity Analysis



Sample Complexity Analysis

Lots more



Stopping Criterion

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Simpler Agnostic Active Learning ou 2010,.)




Su rrOgate I_OSS Hanneke & Yang (2012)




Importance-Weighted Active Learning  tngeaton =




Importance-Weighted Active Learning  tngeaton =




Questions?



Part 3: Beyond Disagreement-Based
Active Learning — Current Directions

Tutorial on Active Learning:

Subregion-Based Active Learning Theory to Practice

Margin-Based Active Learning: Linear Separators

Shattering-Based Active Learning Steve Hanneke

Distribution-Free Analysis, Optimality Toyota Technological Institute at Chicago

TicToc: Adapting to Heterogeneous Noise steve.hanneke@gmail.com

Tsybakov Noise Robert Nowak

University of Wisconsin - Madison
rdnowak@wisc.edu

ICML | 2019

Thirty-sixth International Conference on
Machine Learning



Subregion-Based Active Learning han & Chandi, 2014

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Subregion-Based Active Learning han & Chandi, 2014

DIS(H) :={x e X :3f, f' e H, f(x) # f(x)}

Pick € carefully each round,

R(f) — R(f*) < € at end

e.g., Bounded noise: € oc d27!



Subregion-Based Active Learning han & Chandi, 2014
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Subregion-Based Active Learning han & Chandi, 2014

Px(R,,.(B(f*,r
po = sup PXPrseBY" )
r>€
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Subregion-Based Active Learning han & Chandi, 2014

Px(R,,.(B(f*,r
po = sup PXPrseBY" )
r>€




Subregion-Based Active Learning



Subregion-Based Active Learning




Subregion-Based Active Learning



Subregion-Based Active Learning

r/vd

—

r/vd

———

DIS({w,w*}) in
slab of width ~ r

Most of its prob in
slab of width ~ r/v/d



Subregion-Based Active Learning

r/vd

—

r/vd

———

DIS({w,w*}) in
slab of width ~ r

Most of its prob in
slab of width ~ r/v/d



Subregion-Based Active Learning

Pe +— sup
r>e

Px (RT/C(B(f*7T)))

Recall:

Passive ~ :

d
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I\/I d rgl N- Ba Se d AC'UVe Lea N | N g (Balcan, Broder, Zhang, 2007; ...)

>

Uniform Px on d-dim sphere

(also works for isotropic log-concave distributions)



CO m p U tatl onada ‘ Eff| C | en Cy (Awasthi, Balcan, Long, 2014,...)

Uniform Px on d-dim sphere




CO m p U tatl onada ‘ Eff| C | en Cy (Awasthi, Balcan, Long, 2014,...)

Uniform Px on d-dim sphere




CO m p U tat | onada ‘ Eff| C | en Cy (Awasthi, Balcan, Long, 2014,...)

Uniform Px on d-dim sphere

(was first alg. known to achieve these; even passively)

(also works for isotropic log-concave distributions)



o Next:
nattering-Based Active Learning




Shattering-Based Active Learning (Hanmeke, 200, 2012
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" " " Hanneke, 2009, 2012)
Shattering-Based Active Learning (

«+—— Denote Hy, :={h € H : h(z) =y}
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Denoting H, o :={h € H : h(xz) =y}



Shattering-Based Active Learning

Try k=1

\

random z’

(A={z"})

Given sample x
Rand z’ probably not close

Can’t shatter {z, 2’}
without a lot of points wrong

sample point x

d

So won’t query x

Denoting H, o :={h € H : h(xz) =y}
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Try k=1

\

random z’

(A={z"})

Given sample x
Rand z’ probably not close

Can’t shatter {z, 2’}
without a lot of points wrong

sample point x

d

So won’t query x
DIS(H,,—1) still entire circle (minus z)

Denoting H, , :={h € H : h(z) =y} = gy = —1
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Try k=1

\

random z’

(A={z"})

Given sample x
Rand z’ probably not close

Can’t shatter {z, 2’}
without a lot of points wrong

sample point x

'l
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Shattering-Based Active Learning

Denoting H, o :={h € H : h(xz) =y}

Try k=1

\

random z’

(A={z"})

Given sample x
Rand z’ probably not close

Can’t shatter {z, 2’}
without a lot of points wrong

sample point x

'l

So won’t query x
DIS(H,,—1) still entire circle (minus z)

:>g:c:_1



Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)

Denoting H, o :={h € H : h(xz) =y}



Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)

pF) .= sup Pk (AeX®:B(f*,r) shatters A)
r>e r
d:= min{k : P.;C((A c X% : B(f*, r) shatters A) 7 0}
r—

Denoting H, o :={h € H : h(xz) =y}



Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)

r

d = min{k : PY(A € XF : B(f*,r) shatters A) — 0}

r—0

Denoting H, o :={h € H : h(xz) =y}

M=

In the example: 6 = 2, 6



Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)

r

d = min{k : PY(A € XF : B(f*,r) shatters A) — 0}

r—0

(may depend on f*, Px)

In the example: § =2, 0 = 1

€

Denoting H, o :={h € H : h(xz) =y}



Jp Next:
Distribution-free Analysis




Distribution-Free Analysis e
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Distribution-Free Analysis e

X X X X

X1 o060
| |lo] lol o] |o] |o]
h

JOTTETT

2 3 4 5
0 1 h2 h3 h4 h5

Intervals of width w (b—a=w >0) on X =[0,1]: s ~ |+ ].



Distribution-Free Analysis (el vans, 2015




Distribution-Free Analysis (el vans, 2015




Distribution-Free Analysis (el vans, 2015

lovger bound:
dZ + s+ dlog(2)



Adapting to Heterogeneous Noise

So far: Active learning for spatial heterogeneity of opt function:

4

AN /\M/\/\ / ) +
A VAN

Also consider: Spatial heterogeneity of noise:
1

n(z):=EY|X =2] 0

-1

| ]
—]
- 1



Active Learning with TicToc

Algorithm: A(n)
[nput: Label budget n
Output: Classifier f,,.

L+ {}
. Form=1,2,...

Xs,, < GETSEED(L, m)

An active learning alg.
(e.g. A?)

Ly, < TicToc(Xs,  ,m)
if £, exists, L «+ LU {(sym,Lm)}
If we’ve made n queries

Main new part

TS O R ® N

Return f, <~ LEARN(L)<

A passive learning alg.

(Hanneke & Yang, 2015)



ACtlve Lea rn|ng W|th TICTOC (Hanneke & Yang, 2015)

Algorithm: A(n)
[nput: Label budget n
Output: Classifier f,,.

L+ {}
. Form=1,2,...
Xs, < GETSEED(L,m)
L,, + TicToc(X,, ,m) Focus queries on less-noisy points.
if £, exists, L «+ LU {(sym,Lm)}
If we’ve made n queries

Return f,, < LEARN(L)

Double advantage:

TS O R ® N

e Focusing on the points we actually care about:

R(flz) = R(f*|z) = |n(@)[I[f(z) # f*(z)]

(small |np(x)| = not much effect on R(f|x) if f(x) = f*(x) or not).

e And those points require fewer queries to determine f*(X;)!
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Algorithm: A(n)
[nput: Label budget n
Output: Classifier f,,.

L+ {}
. Form=1,2,...
Xs, < GETSEED(L,m)
L,, + TicToc(X,, ,m) Focus queries on less-noisy points.
if £, exists, L «+ LU {(sym,Lm)}
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ACtlve Lea rn|ng W|th TICTOC (Hanneke & Yang, 2015)

Algorithm: A(n)

Input: Label budget n

Output: Classifier fn.

1. L+ {}

2. Form=1,2,...

3. Xs, < GETSEED(L,m)

4. L, TICTOC(XSm, m) Focus queries on less-noisy points.
5. if £, exists, L <~ LU {(sy,Lm)}

6. If we've made n queries Double advantage:

7. Return f,, < LEARN(L)

e Focusing on the points we actually care about:

R(flz) = R(f*|z) = |n(@)[I[f(z) # f*(z)]

(small |np(x)| = not much effect on R(f|x) if f(x) = f*(x) or not).

. . . e And those points require fewer queries to determine f*(X;)!
Confirms agnostic sample complexity conjecture

but with extra assumption f* = global opt.

Near-match lower bound: df—j + s + d log(

M=

)



Principles of Active Learning

1. Query in dense regions where f could disagree a lot with f*

2. Query in regions with low noise



Tsybakov Noise

The alg. adapts to heterogeneity in the noise.

Let’s try it with a model that explicitly describes
heterogeneous noise:

Tsybakov Noise



. (Tsybakov, 2004;
Tsy b a kOV N O I S e Mammen & Tsybakov 1999)
Denote n(x) = E[Y|X = x|
Definition: (Tsybakov noise)

f*(x) = sign(n(z)) and Ja € (0,1) s.t. V7 >0,
Px(e: [n(z)] < 7) S 7ii.



Tsybakov Noise

Denote n(x) = E[Y|X = x|

Definition: (Tsybakov noise)
f*(x) =sign(n(xz)) and Ja € (0,1) s.t. V7 > 0,
Px(z:|n(z)| <7) S 777

Example:

Behavior at 0
Thresholds M(x) determines o
1

: Y

; _

(unif. distrib)

(Tsybakov, 2004;
Mammen & Tsybakov 1999)



Tsybakov Noise

Denote n(x) = E[Y|X = x|

Definition: (Tsybakov noise)
f*(x) =sign(n(xz)) and Ja € (0,1) s.t. V7 > 0,
Px(z:|n(z)| <7) S 777

Passive OPT: © (62%)

o if0<a<1/2
min { 7%= (5)*7, 4} if1/2<a<1’
|

Active OPT:

(roughly)

|

{ﬁ, lf5<OO

1 . _ '
=) le—OO

Active Opt < Passive Opt.
(always)



Conclusions



Questions?
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Conventional (Passive) Machine Learning

l labeled

unlabeled human w data [ machine predictive
raw data Iabeling) learning model

dog

>

boat



QUARTZ

Google says its new Al-powered
translation tool scores nearly identically to
human translators

Computers now better than humans at
recognising and sorting images

millions of labeled images

, trained on more texts than a
|000’s of human hours

human could read in a lifetime

Can we train machines with less labeled
data and less human supervision?



Active Machine Learning

Goal: machine automatically
and adaptively selects most
informative data for labeling

l labeled
unlabeled human W data [ machine predictive
raw data labeling J learning model

data selection )
algorithm




Motivating Application

provides labels to machine learner
(several minutes / EHR)



Active Learning

EHR feature 2

®
o © °
o @ ® Non-adaptive strategy: Label a random sample
'0.. ' o ®
" o Active strategy: Label a sample near best
@' ® decision boundary based on labels seen so far
o O
® ““. pest linear classifier
o
®
o ©

EHR feature 1

error rate €

active learning finds optimal
classifier with much less
human supervision!

# labels



Active Logistic Regression

active learning
passive learning

11000 patient records
8000 positive
3000 negative

6182 Numerical Features
icd9 codes
lab tests
patient data

Classification task:
e, Cataracts or healthy

less than half as many labeled
examples needed by active learning



nextml.org



Active learning to optimize crowdsourcing and
rating in New Yorker Cartoon Caption Contest



Actively learning user’s beer preferences



Principles of Active Learning



What and Where Information

p(y|x) 4
Density estimation: What is p(y|x)?
Classification: Where is p(y|x) > 07 T
(x) 1
x
Density estimation: What is p(x)? P
Clustering: Where is p(z) > €7 B .
Elylz] 1

Function estimation: What is E|y|x|?
Bandit optimization: Where is max, E|y|z]?

Active learning is more efficient than passive
learning for localized “where” information



Meta-Algorithm for Active Learning

Version-Space (VS) Active Learning

initialize VS: ‘H = all models/hypotheses

while (stopping-criterion) not met

1. sample at random from available dataset

2. label only th les that distingui
abel only those samples that distinguiysstys

3. reduce H by removing all models incAiCRCIIgiEs
to label

output: best model in final ‘H

bels




Learning a 1-D Classitier

binary search quickly finds decision boundary

passive : efr ~ n 1

active: err ~ 27"



Vapnik-Chervonenkis (VC) Theory

Given training data {(z;,y;)}7_;, learn a function f to predict y from z

Consider a possibly infinite set of hypotheses F with finite VC dimension d
and for each f € F define the risk (error rate):

R(f) = P(f(z) #y)

n

error rate on = 1 y .. C
training data: R(f) — ﬁ Z]l(f(xz) 7’é yz) empirical risk

1=1

dlog(n/é)

n

VC bound:  sup |R(f) — R(f)| < 6\/
feF

w.p. > 1—9



—mpirical

Risk Minimization (

-RM)

Goal: select hypothesis with true error rate within € > 0 of min ;e x R(f)

/o=

)
]

TN g

sufficient number dlog(n/d)
of training examples: 12

argmin R(f) true risk minimizer

feF

feF

L error

f minimizes empirical risk:

arg min F2( f) empirical risk minimizer

n

<. P a=0f

R(f) < R(f*)
< 12\/allog7(:1/5)
dlog(1/6)

=)



—mpirical Risks and Confidence Intervals
o
o 5 o
5 ? i
o i -
1 2 3 K-1 K

hypotheses (ordered according to empirical risks)
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Risks and Confidence Intervals

2 3 K-1

hypotheses (ordered according to empirical risks)

more training data = smaller confidence intervals

K



—mpirical Risks and Confidence Intervals

1 2 3 K-1 K

hypotheses (ordered according to empirical risks)

more training data = smaller confidence intervals



RM Is Wasting Labeled Examples

- ; o R(f3)
1 2 3 K-1 K

hypotheses (ordered according to empirical risks)



RM Is Wasting Labeled Examples

at this point we can safely remove

f3 from further consideration o .
:_ 55 o
(E) o and we probably could have removed
i other hypotheses even sooner
1 2 3 K-1 K

hypotheses (ordered according to empirical risks)

only require labels for examples that
hypotheses 1 and 2 label differently
(i.e., examples where they disagree)



Disagreement-

Based Active Learning

consider points uniform on unit ball and
linear classifiers passing through origin

only label points in the
region of disagreement ®




Active Binary Classification

Assuming optimal Bayes classifer f* in VC class with dimension d
and “nice” distributions (e.g., bounded label noise)

passive € ~~ parametric rate

n :
€ ~ exp ( —C E) exponential speed-up

passive

Bayes error rate fmm

R(f7) # labels



Tutorial Outline

Part 1: Introduction to Active Learning (Rob)
Part 2: Theory of Active Learning (Steve)
Part 3. Advanced Topics and Open Problems (Steve)

Part 4: Nonparametric Active Learning (Rob)

slides: http://nowak.ece.wisc.edu/ActiveML.html
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Part 2: Theory of Active Learning
General Case

Disagreement-Based Agnostic Active Learning

Disagreement Coefficient

Sample Complexity Bounds

ICML | 2019

Tutorial on Active Learning:
Theory to Practice

Steve Hanneke

Toyota Technological Institute at Chicago
steve.hanneke@gmail.com

Robert Nowak

University of Wisconsin - Madison
rdnowak@wisc.edu

Thirty-sixth International Conference on

Machine Learning




Agnostic Active Learning



Uniform Bernstein Inequality

VC dimension



Ag n OSt | C ACtlve I—e a r n I n g Balcan, Beygelzimer, & Langford (2006)




Agnostic Active Learning

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}
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Agnostic Active Learning

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Sample Complexity Analysis anneke (2007,.)

) — oy PXDIS(BU )
r>e r




Sample Complexity Analysis




Sample Complexity Analysis

0 ]
i

DIS(B(f*,r)) = [t* —r,t* +7)
Px (DIS(B(f*,7))) = 2r

0 =2



Sample Complexity Analysis

==

tr Py
DIS(B(f*,7)) = [¢* — 1, t* + 1)
Px(DIS(B(f*,7))) = 2r

=0 =2



Sample Complexity Analysis
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Sample Complexity Analysis

Example: homog. linear separators (bias 0),
n dimensions, uniform Px on sphere.
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f*
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Sample Complexity Analysis

Example: homog. linear separators (bias 0),
n dimensions, uniform Px on sphere.

f*
DIS(B(f*,r))

Some geometry = for small r,
Px(DIS(B(f*,1))) ox y/nr.
= 0 x /n.
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Sample Complexity Analysis

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Sample Complexity Analysis

DIS(H) :={x e X :3f, f' e H, f(x) # f(x)}

Bounded noise:

R(f) = R(f") :#J},EP(Y = [H(X)|X) = P(Y # f*(X)|X))dPx
> (1 -28)Px(f # [7)
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Sample Complexity Analysis

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}

Px(f # ) < R(f) + R(f*) =28 + R(f) — R(f")




Sample Complexity Analysis



Sample Complexity Analysis

Lots more



Stopping Criterion

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Simpler Agnostic Active Learning ou 2010,.)




Su rrOgate I_OSS Hanneke & Yang (2012)




Importance-Weighted Active Learning  tngeaton =




Importance-Weighted Active Learning  tngeaton =




Questions?



Part 3: Beyond Disagreement-Based
Active Learning — Current Directions

Tutorial on Active Learning:

Subregion-Based Active Learning Theory to Practice

Margin-Based Active Learning: Linear Separators

Shattering-Based Active Learning Steve Hanneke

Distribution-Free Analysis, Optimality Toyota Technological Institute at Chicago

TicToc: Adapting to Heterogeneous Noise steve.hanneke@gmail.com

Tsybakov Noise Robert Nowak

University of Wisconsin - Madison
rdnowak@wisc.edu

ICML | 2019

Thirty-sixth International Conference on
Machine Learning



Subregion-Based Active Learning han & Chandi, 2014

DIS(H) :={x e X :3f, f e H, f(z) # f'(x)}




Subregion-Based Active Learning han & Chandi, 2014

DIS(H) :={x e X :3f, f' e H, f(x) # f(x)}

Pick € carefully each round,

R(f) — R(f*) < € at end

e.g., Bounded noise: € oc d27!



Subregion-Based Active Learning han & Chandi, 2014
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. PX(RT/C(B(f*aT)))
Pe = Sl;p -




Subregion-Based Active Learning han & Chandi, 2014

DIS(H) :={x e X :3f, f' e H, f(x) # f(x)}

. PX(RT/C(B(f*aT)))
Pe = Sl;p -
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Subregion-Based Active Learning han & Chandi, 2014

Px(R,,.(B(f*,r
po = sup PXPrseBY" )
r>€
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Subregion-Based Active Learning



Subregion-Based Active Learning

r/vd

—

r/vd

———

DIS({w,w*}) in
slab of width ~ r

Most of its prob in
slab of width ~ r/v/d



Subregion-Based Active Learning

r/vd

—

r/vd

———

DIS({w,w*}) in
slab of width ~ r

Most of its prob in
slab of width ~ r/v/d



Subregion-Based Active Learning

Pe +— sup
r>e

Px (RT/C(B(f*7T)))

Recall:

Passive ~ :

d
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I\/I d rgl N- Ba Se d AC'UVe Lea N | N g (Balcan, Broder, Zhang, 2007; ...)

>

Uniform Px on d-dim sphere

(also works for isotropic log-concave distributions)
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Uniform Px on d-dim sphere




CO m p U tat | onada ‘ Eff| C | en Cy (Awasthi, Balcan, Long, 2014,...)

Uniform Px on d-dim sphere

(was first alg. known to achieve these; even passively)

(also works for isotropic log-concave distributions)



o Next:
nattering-Based Active Learning




Shattering-Based Active Learning (Hanmeke, 200, 2012
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" " " Hanneke, 2009, 2012)
Shattering-Based Active Learning (

«+—— Denote Hy, :={h € H : h(z) =y}
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Shattering-Based Active Learning

Try k=1

\

random z’

(A={z"})

Given sample x
Rand z’ probably not close

Can’t shatter {z, 2’}
without a lot of points wrong

sample point x

d

So won’t query x

Denoting H, o :={h € H : h(xz) =y}
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Given sample x
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sample point x

d

So won’t query x
DIS(H,,—1) still entire circle (minus z)

Denoting H, , :={h € H : h(z) =y} = gy = —1
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random z’
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Given sample x
Rand z’ probably not close
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without a lot of points wrong

sample point x

'l

So won’t query x
DIS(H,,—1) still entire circle (minus z)

:>@:B:_1



Shattering-Based Active Learning

Denoting H, o :={h € H : h(xz) =y}

Try k=1

\

random z’

(A={z"})

Given sample x
Rand z’ probably not close

Can’t shatter {z, 2’}
without a lot of points wrong

sample point x

'l

So won’t query x
DIS(H,,—1) still entire circle (minus z)

:>g:c:_1



Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)
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Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)

pF) .= sup Pk (AeX®:B(f*,r) shatters A)
r>e r
d:= min{k : P.;C((A c X% : B(f*, r) shatters A) 7 0}
r—

Denoting H, o :={h € H : h(xz) =y}



Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)

r

d = min{k : PY(A € XF : B(f*,r) shatters A) — 0}

r—0

Denoting H, o :={h € H : h(xz) =y}

M=

In the example: 6 = 2, 6



Shattering-Based Active Learning

Generally, need to try various k£ and pick one
(See the papers)

r

d = min{k : PY(A € XF : B(f*,r) shatters A) — 0}

r—0

(may depend on f*, Px)

In the example: § =2, 0 = 1

€

Denoting H, o :={h € H : h(xz) =y}



Jp Next:
Distribution-free Analysis
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Distribution-Free Analysis e

X X X X

X1 o060
| |lo] lol o] |o] |o]
h

JOTTETT

2 3 4 5
0 1 h2 h3 h4 h5

Intervals of width w (b—a=w >0) on X =[0,1]: s ~ |+ ].
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Distribution-Free Analysis (el vans, 2015

lovger bound:
dZ + s+ dlog(2)



Adapting to Heterogeneous Noise

So far: Active learning for spatial heterogeneity of opt function:

4

AN /\M/\/\ / ) +
A VAN

Also consider: Spatial heterogeneity of noise:
1

n(z):=EY|X =2] 0

-1

| ]
—]
- 1



Active Learning with TicToc

Algorithm: A(n)
[nput: Label budget n
Output: Classifier f,,.

L+ {}
. Form=1,2,...

Xs,, < GETSEED(L, m)

An active learning alg.
(e.g. A?)

Ly, < TicToc(Xs,  ,m)
if £, exists, L «+ LU {(sym,Lm)}
If we’ve made n queries

Main new part

TS O R ® N

Return f, <~ LEARN(L)<

A passive learning alg.

(Hanneke & Yang, 2015)



ACtlve Lea rn|ng W|th TICTOC (Hanneke & Yang, 2015)

Algorithm: A(n)
[nput: Label budget n
Output: Classifier f,,.

L+ {}
. Form=1,2,...
Xs, < GETSEED(L,m)
L,, + TicToc(X,, ,m) Focus queries on less-noisy points.
if £, exists, L «+ LU {(sym,Lm)}
If we’ve made n queries

Return f,, < LEARN(L)

Double advantage:

TS O R ® N

e Focusing on the points we actually care about:

R(flz) = R(f*|z) = |n(@)[I[f(z) # f*(z)]

(small |np(x)| = not much effect on R(f|x) if f(x) = f*(x) or not).

e And those points require fewer queries to determine f*(X;)!




ACtlve Lea rn|ng W|th TICTOC (Hanneke & Yang, 2015)

Algorithm: A(n)
[nput: Label budget n
Output: Classifier f,,.

L+ {}
. Form=1,2,...
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L,, + TicToc(X,, ,m) Focus queries on less-noisy points.
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ACtlve Lea rn|ng W|th TICTOC (Hanneke & Yang, 2015)

Algorithm: A(n)

Input: Label budget n

Output: Classifier fn.

1. L+ {}

2. Form=1,2,...

3. Xs, < GETSEED(L,m)

4. L, TICTOC(XSm, m) Focus queries on less-noisy points.
5. if £, exists, L <~ LU {(sy,Lm)}

6. If we've made n queries Double advantage:

7. Return f,, < LEARN(L)

e Focusing on the points we actually care about:

R(flz) = R(f*|z) = |n(@)[I[f(z) # f*(z)]

(small |np(x)| = not much effect on R(f|x) if f(x) = f*(x) or not).

. . . e And those points require fewer queries to determine f*(X;)!
Confirms agnostic sample complexity conjecture

but with extra assumption f* = global opt.

Near-match lower bound: df—j + s + d log(

M=

)



Principles of Active Learning

1. Query in dense regions where f could disagree a lot with f*

2. Query in regions with low noise



Tsybakov Noise

The alg. adapts to heterogeneity in the noise.

Let’s try it with a model that explicitly describes
heterogeneous noise:

Tsybakov Noise



. (Tsybakov, 2004;
Tsy b a kOV N O I S e Mammen & Tsybakov 1999)
Denote n(x) = E[Y|X = x|
Definition: (Tsybakov noise)

f*(x) = sign(n(z)) and Ja € (0,1) s.t. V7 >0,
Px(e: [n(z)] < 7) S 7ii.



Tsybakov Noise

Denote n(x) = E[Y|X = x|

Definition: (Tsybakov noise)
f*(x) =sign(n(xz)) and Ja € (0,1) s.t. V7 > 0,
Px(z:|n(z)| <7) S 777

Example:

Behavior at 0
Thresholds M(x) determines o
1

: Y

; _

(unif. distrib)

(Tsybakov, 2004;
Mammen & Tsybakov 1999)



Tsybakov Noise

Denote n(x) = E[Y|X = x|

Definition: (Tsybakov noise)
f*(x) =sign(n(xz)) and Ja € (0,1) s.t. V7 > 0,
Px(z:|n(z)| <7) S 777

Passive OPT: © (62%)

o if0<a<1/2
min { 7%= (5)*7, 4} if1/2<a<1’
|

Active OPT:

(roughly)

|

{ﬁ, lf5<OO

1 . _ '
=) le—OO

Active Opt < Passive Opt.
(always)



Conclusions



Questions?



