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Motivation:

We will never really understand learning 
until we build machines that, like people:
• learn many different things, 
• from years of diverse experience,
• in a staged, curricular fashion, 
• and become better learners over time.



Much research over the years…

• Learning to learn 
• Life-long learning 
• Never Ending Learning

Essentially the same goal:
• learn many different things, 
• from years of diverse experience,
• in a staged, curricular fashion, 
• and become better learners over time.



Many related subproblems…

• Multi-task learning
• Curriculum learning
• Cross-task knowledge transfer
• Meta-learning
• Amortized representation learning
• Curiosity-driven learning
• Multi-agent learning
• Cognitive modeling
• …



Fundamentally a question of agent architecture

Learning single function: Learning agent:

Y

X

f: X à Y



Fundamentally a question of agent architecture

What set of functions, memories, drives/rewards 
should architecture have?

How should they be interconnected?

What self-reflection and learning mechanisms?

What knowledge should be represented by 
explicit functions/mappings/memories, vs. 
implicit, computed on demand?

…



What should a theory of Learning Agents answer?

might model learning agent A as tuple <S,E,M,F,G,L>
• S = sensors
• E = effectors
• F = set of functions
• M = set of memory units
• G = graph specifying data flow among F, M, S, E
• L = learning mechanism

might model L as another agent L = <SL,EL,ML,FL,GL>
• where SL, EL sense and act on Agent, especially its F, M, G



A = <Sensors, Effectors, Memory, Fns, Graph, L>
L = <SL,EL,ML,FL,GL>

Q: What initial A structure  <S,E,M,F,G,L> suffices to ensure agent A 
can in principle modify itself into any computable behavior with respect 
to its sensors S and effectors E?

Q: What initial A structure allows A to learn from unlabeled data?

Q: What initial A structure allows A to learn to learn?

Q: What initial A structure allows A to self-reflect on its own abilities, 
and redirect its learning effort?

What should a theory of Never Ending Learning Agents answer?



A Case Study: NELL



NELL: Never-Ending Language Learner

The Learning Agent task:
• run 24x7, forever
• each day:

1. extract more facts from the web to populate 
knowledge base

2. learn to read (perform #1) better than yesterday

Inputs:
• initial ontology (categories and relations)
• dozen examples of each ontology predicate
• the web
• occasional interaction with human trainers



NELL’s Eight Years

Ran 24x7, from January, 2010 to September 2018.

Result:
• KB with ~120 million confidence-weighted beliefs
• learned to improve its reading ability

its reasoning ability
its learning ability

• extended its ontology of known relations

Case study of never-ending learning agent
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NELL Improving Over Time
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[Mitchell et al., CACM 2018]

reading skill10’s of millions of beliefs



Q: What initial A structure allows A to learn from unlabeled data?



hard 
(underconstrained) 
semi-supervised 

learning

Y: person

X: noun phrase

f: X à Y



hard 
(underconstrained) 
semi-supervised 

learning

Key Idea: Massively coupled semi-supervised training

much easier
(more constrained)
semi-supervised 

learning

Y: person

X: noun phrase

team

person
athlete

coach
sport

noun phrase
text context
“ __ is my son”

noun phrase 
morphology
ends in ‘…ski’

noun phrase
URL specific
appears in list2 
at URL35401

f: X à Y



x:

Supervised training of 1 function:

y: person



x:

y: person

Coupled training of 2 functions:



NELL Learned Contexts for “Hotel” (~1% of total)

"_ is the only five-star hotel”  "_ is the only hotel” "_ is the perfect 
accommodation" "_ is the perfect address”  "_ is the perfect lodging” 
"_ is the sister hotel” "_ is the ultimate hotel" "_ is the value choice” "_ is 
uniquely situated in” "_ is Walking Distance” "_ is wonderfully situated in” 
"_ las vegas hotel” "_ los angeles hotels” "_ Make an online hotel 
reservation” "_ makes a great home-base” "_ mentions Downtown” "_ 
mette a disposizione” "_ miami south beach” "_ minded traveler” "_ mucha
prague Map Hotel” "_ n'est qu'quelques minutes” "_ naturally has a pool” 
"_ is the perfect central location” "_ is the perfect extended stay hotel”  "_ 
is the perfect headquarters” "_ is the perfect home base”  "_ is the perfect 
lodging choice"  "_ north reddington beach” "_ now offer guests” "_ now 
offers guests” "_ occupies a privileged location” "_ occupies an ideal 
location” "_ offer a king bed” "_ offer a large bedroom” "_ offer a master 
bedroom”  "_ offer a refrigerator” "_ offer a separate living area" "_ offer 
a separate living room” "_ offer comfortable rooms” "_ offer 
complimentary shuttle service”  "_ offer deluxe accommodations” "_ offer 
family rooms” "_ offer secure online reservations” "_ offer upscale 
amenities”  "_ offering a complimentary continental breakfast” "_ offering 
comfortable rooms” "_ offering convenient access” "_ offering great 



NELL Highest Weighted* string fragments: “Hotel”  
1.82307 SUFFIX=tel
1.81727 SUFFIX=otel
1.43756 LAST_WORD=inn
1.12796 PREFIX=in
1.12714 PREFIX=hote
1.08925 PREFIX=hot
1.06683 SUFFIX=odge
1.04524 SUFFIX=uites
1.04476       FIRST_WORD=hilton
1.04229 PREFIX=resor
1.02291 SUFFIX=ort
1.00765 FIRST_WORD=the
0.97019 SUFFIX=ites
0.95585 FIRST_WORD=le
0.95574 PREFIX=marr
0.95354 PREFIX=marri
0.93224 PREFIX=hyat
0.92353 SUFFIX=yatt
0.88297 SUFFIX=riott
0.88023 PREFIX=west

* By logistic regression



x:

y: person

Type 1 Coupling: Co-Training, Multi-View Learning

Theorem (Blum & Mitchell, 1998): 

If f1,and f2 are PAC learnable from noisy
labeled data, and X1, X2 are
conditionally independent given Y,

Then  f1, f2 are PAC learnable from 
polynomial unlabeled data plus a 
weak initial predictor



x:

y: person

[Blum & Mitchell; 98]
[Dasgupta et al; 01 ]
[Balcan & Blum; 08]
[Ganchev et al., 08]
[Sridharan & Kakade, 08]
[Wang & Zhou, ICML10]

Type 1 Coupling: Co-Training, Multi-View Learning



team

person
athlete

coach
sport

NP

subset/superset
athlete(NP) à person(NP)

mutual exclusion
athlete(NP) à NOT sport(NP)
sport(NP) à NOT athlete(NP)

Type 2 Coupling: Multi-task, Structured Outputs



team

person

NP:

athlete
coach

sport

NP text 
context 

distribution

NP 
morphology

NP HTML 
contexts

Multi-view, Multi-Task Coupling



coachesTeam(c,
t)

playsForTeam(a,t
)

teamPlaysSport(t,s)

playsSport(a,s)

NP1 NP2

Type 3 Coupling: Relations and Argument Types



team

coachesTeam(c,t)playsForTeam(a,t) teamPlaysSport(t,s)

playsSport(a,s)

person

NP1

athlete

coach

sport

team

person

NP2

athlete

coach

sport

Type 3 Coupling: Relations and Argument Types



team

coachesTeam(c,t)playsForTeam(a,t) teamPlaysSport(t,s)

playsSport(a,s)

person

NP1

athlete

coach

sport

team

person

NP2

athlete

coach

sport

playsSport(NP1,NP2) à athlete(NP1), sport(NP2)

Type 3 Coupling: Relations and Argument Types



argument type consistency

team

coachesTeam(c,t)playsForTeam(a,t) teamPlaysSport(t,s)

playsSport(a,s)

person

NP12

athlete

coach

sport

team

person

NP22

athlete

coach

sport

over 4000 coupled functions in NELL

Type 3 Coupling: Relations and Argument Types

NP11 NP21

subset/superset
mutual exclusion

multi-view consistency



Q: What initial A structure allows A to learn from unlabeled data?

Ans:  Couple the training of many functions 
that capture overlapping information



Q: What architectures allow an agent to learn to learn?

i.e., where learning functions of type 1 improves the ability to
learn functions of type 2



Learn new coupling constraints

• first order, probabilistic horn clause constraints:

– learned from millions of beliefs in the knowledge base
– connect previously uncoupled relation predicates
– NELL has learned100,000s of such rules
– uses PRA random-walk inference [Lao, Cohen, Gardner]

0.93  athletePlaysSport(?x,?y) ß athletePlaysForTeam(?x,?z)
teamPlaysSport(?z,?y)



If: x1 competes
with 

(x1,x2)

x2 economic 
sector (x2, 

x3)

x3

Then: economic sector (x1, x3)   with probability 0.9

PRA:  [Lao, Mitchell, Cohen, EMNLP 2011]Learn inference rules



If: x1 competes
with 

(x1,x2)

x2 economic 
sector (x2, 

x3)

x3

Then: economic sector (x1, x3)   with probability 0.9

economic sector 

PRA:  [Lao, Mitchell, Cohen, EMNLP 2011]Learn inference rules



team

coachesTeam(c,t)playsForTeam(a,t) teamPlaysSport(t,s)

playsSport(a,s)

person

NP1

athlete

coach

sport

team

person

NP2

athlete

coach

sport

Learned Rules are New Coupling Constraints

0.93  playsSport(?x,?y) ß playsForTeam(?x,?z), teamPlaysSport(?z,?y)



• Learning A makes one a better learner of B
• Learning B makes one a better learner of A

A = reading functions: text à beliefs
B = Horn clause rules: beliefs à beliefs

Learned Rules are New Coupling Constraints



Q:  Can we prove conditions under which learning 
both type 1 and type 2 functions, from the same 
data, improves ability to learn type 1 functions?

X1 X2 X3

Y1

Y2 Y4
Y5

Type 1 functions:  fik: Xi à Yk

Type 2 functions:  gnm: Yn à Ym

Can we find conditions under which we 
lower the unlabeled sample complexity 
for learning all fik functions, by adding 
the tasks of also learning the gnm
functions?

Conjecture: yes



Self-Reflection

Q: what architectures allow agent to estimate accuracy of learned functions,
given only unlabeled data?



Self-Reflection

Q: what architectures allow agent to estimate accuracy of learned functions,
given only unlabeled data?



Problem setting: 
• have N different estimates               of target function

Goal:
• estimate accuracy of each of                from unlabeled data 

[Platanios, Blum, Mitchell]

= NELL category “hotel”

= noun phrase

= classifier based on ith

view of 

Example:



Problem setting: 
• have N different estimates               of target function

• define agreement between fi, fj :

[Platanios, Blum, Mitchell]



Problem setting: 
• have N different estimates               of target function

• define agreement between fi, fj :

Note agreement can be estimated with unlabeled data

Pr[neither makes error] + Pr[both make error]

prob. fi and fj
agree

prob. fi
error

prob. fj
error

prob. fi and fj
simultaneous error



Estimating Error from Unlabeled Data

1. IF f1 , f2 , f3 make independent errors, 
then
becomes

prob. fi and fj
simultaneous error



Estimating Error from Unlabeled Data

1. IF f1 , f2 , f3 make independent errors, 
then
becomes

If errors independent, and e1  < 0.5, e2 < 0.5, then
- use unlabeled data to estimate a12, a13, a23. Solve for error rates

prob. fi and fj
simultaneous error



Estimating Error from Unlabeled Data

1. IF f1 , f2 , f3 make indep. errors, accuracies > 0.5
then
becomes

2. but what if errors not independent?



Estimating Error from Unlabeled Data

1. IF f1 , f2 , f3 make indep. errors, accuracies > 0.5
then
becomes

2. but if errors not independent, add prior: 
the more independent, the more probable



True error (red), estimated error (blue)
NELL classifiers:

[Platanios et al., 2014]



Self-Reflection

Q: what architectures allow agent to estimate accuracy of 
its learned functions, given only unlabeled data?

Ans:  Again, architectures that have many functions, capturing 
overlapping information



Given functions fi: Xi à {0,1} that
– make independent errors
– are better than chance

Multiview setting

Q:  Is accuracy estimation strictly harder than learning?

If you have at least 2 such functions 
– they can be PAC learned by co-training them to agree 

over unlabeled data [Blum & Mitchell, 1998]

If you have at least 3 such functions 
– their accuracy can be calculated from agreement rates 

over unlabeled data [Platanios et al., 2014]



Reinforcement Learning



Sensors Effectors

ASR

Setting:  States S, Actions A
Learn a policy 

that optimizes sum of rewards 
discounted over time:

Learn:



Sensors Effectors

ASR

V*

Setting:  States S, Actions A
Learn a policy 

that optimizes sum of rewards 
discounted over time:

Learn:



Sensors Effectors

ASR

V* Q*

Setting:  States S, Actions A
Learn a policy 

that optimizes sum of rewards 
discounted over time:

Learn:



Sensors Effectors

ASR

V* Q* St+1

Setting:  States S, Actions A
Learn a policy 

that optimizes sum of rewards 
discounted over time:

Learn:

M



Sensors Effectors

ASR

V* Q* St+1

Learn:Setting:  States S, Actions A
Learn a policy 

that optimizes sum of rewards 
discounted over time:



Sensors Effectors

ASR

V* Q* St+1

Note these functions inter-related! 

à Coupled training from unlabeled data

• Actor-critic methods learn
V* and      jointly

• Coupling constraints among other 
functions as well, e.g., 

Learn:



Coupled training of V*(s) and Q*(s,a)

Represent V(s), Q(s,a) as two neural nets, train at each 
step to minimize sq error violation of coupling constraint

(based on Deep Q Learning w/experience replay [Mnih, et al. 2015])
[Ozutemiz & Bhotika, 2018, class project]



Alpha Go Zero coupled training of.                , 

Coupling by shared neural network to learn 
shared state representation



Reinforcement learning – conclusions

• Good fit to deep networks

• Coupled unsupervised training of multiple functions

• Couple either
– Through shared representation (e.g., Alpha Go Zero)
– Through explicit coupling of independently represented functions

• Self-supervised data available for some functions

• Conjecture: further improvements possible by adding yet more 
inter-related functions, and coupling their training …



Reinforcement learning – many extensions

• Experience replay
• Imitation learning
• Hierarchical actions
• Reward shaping
• Curiosity-driven learning
• …



Self-Reflection

Q: How can we architect a never-ending learning agent so that it 
can notice every learning need, and address it? 



Self-Reflection

Q: How can we architect a never-ending learning agent so that it 
can notice every learning need, and address it? 

SOAR:  A Case Study

Soar: An architecture for general intelligence JE Laird, A Newell, PS Rosenbloom -
Artificial intelligence, 1987.  

The Soar cognitive architecture MIT Press, JE Laird - 2012



SOAR

Design philosophy:
• Self-reflection that can detect every possible 

shortcoming (called impasse) of the agent
• There are only four types of impasses
• Every instance of an impasse can be solved using a 

(potentially expensive) built in method
• Every solved impasse results in learning an if-then 

rule that will pre-empt that impasse in the future (and 
ones like it)

à Every shortcoming will be noticed by the agent, and 
will result in learning to avoid it

[Laird, Newell, Rosenbloom, 1987]

[Laird, 2012].  



SOAR

Key design elements:
• Every problem is treated as a search problem
• Self-reflection mechanism detects every possible difficulty 

in solving search problems (called impasses). 



SOAR Decision Cycle

[Newell 1990]

SOAR chooses
• Problem space
• Search state
• Operator



SOAR

Key design elements:
• Every problem is treated as a search problem
• Self-reflection mechanism detects every possible difficulty 

in solving search problems (called impasses). Four types:
– Tie impasse : among potential next steps, no obvious “best”
– No-change impasse : no available next steps
– Reject impasse : only available step is to reject options
– Conflict impasse : incompatible recommendations for next step

• When impasse detected, architecture formulates the 
problem of resolving it, as a new search problem (in a 
different search space)

• Initial architecture seeded with weak search methods to 
solve all four impasses

• After resolving an impasse, SOAR creates a new rule that 
will pre-empt this (and similar) impasses in the future



SOAR - Example

CB

[Newell 1990]



SOAR 

[Newell 1990]



SOAR

Lessons:

• Elegant architecture with complete self-reflection and learning

– Complete = every need for learning noticed and addressed

• Built on a canonical representation of problem-solving as search

Then why didn’t it solve the AI problem?

• It worked well for search problems with fully known actions and 

goal states, but…

• We lack accurate search operators for real robot actions

• Perception is hard to frame as search with a goal state

• Even for chess, didn’t fully handle scaling up

Nevertheless:  SOAR-TECH
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Research Issues
• Continual Learning and Catastrophic Forgetting 

• (External) Knowledge and Reasoning 

• Representation Learning 

• Self Reflection 

• Curriculum Learning



Continual Learning (CL)
• Tasks arrive sequentially: T1, T2, T3, … 

• One approach: Multitask Learning (MTL) over all tasks so 
far 

• Effective but impractical: need to store data from all 
previous tasks and replayed for each new task 

• What we need: learn new task well 

• without having to store and replay data from old tasks 

• without losing performance in old tasks: catastrophic 
forgetting (next)



Catastrophic Forgetting (CF) 
[McCloskey and Cohen, 1989]

Forgetting previously trained tasks while 
learning new tasks sequentially

• Main approaches 

• Regularization based 

• Generative replay

[Kirkpatrick et al, 2017]



Summary of CL Approaches 
                [Li and Hoeim, ICML 2016; Chen and Liu, 2018]

Shared params Old task params
: New task paramsθn



Learning without Forgetting (LwF)  
                [Li and Hoeim, ICML 2016]

LwF: Training data from old tasks is not available

• Update shared and old task params so that old task output on new 
task data are preserved 

• Constraint on output, rather than on parameters directly 

• Experiments on image classification datasets: ImageNet => Scenes



Elastic Weight Consolidation (EWC) 
[Kirkpatrick et al, PNAS 2017]

Task B Loss

Idea: Don’t let 
important parameters 

change drastically 
(reduce plasticity)

• Inspired by research 
on synaptic 
consolidation



Elastic Weight Consolidation (EWC) 
[Kirkpatrick et al., PNAS 2017]

MNIST experiments. New tasks 
are random pixel permutations.

L2 is too rigid, doesn’t 
allow learning on new 
tasks => parameter 
weighting is important

Catastrophic 
Forgetting in SGD



Deep Generative Replay 
[Shin et al., NeurIPS 2017]

Generate old task pseudo data using generative model 
(e.g., GAN). No exact replay of old task data.



CL Evaluations 
[Kemker et al., AAAI 2018]

• Three settings 

• Data permutation 

• Incremental Class 

• Multimodal

No single winner. CF is far from being solved.



Research Issues
• Continual Learning and Catastrophic Forgetting 

• (External) Knowledge and Reasoning 

• Representation Learning 

• Self Reflection 

• Curriculum Learning



Internal vs External Knowledge

Learning Agent

Internal Knowledge

External Knowledge

update use

affect

sense

Environment

• Two types of external knowledge: 

• memory listing (Memory Networks) 

• relational (Knowledge Graphs)

How to use and update 
external knowledge?



Memory Networks 
[Weston et al., ICLR 2015]

 

http://www.thespermwhale.com/jaseweston/icml2016/

• Memory Nets 

• learning with read/write 
memory 

• Reasoning with Attention 
and Memory (RAM)



End2End Memory Networks 
[Sukhbaatar et al., NeurIPS 2015]

 

• Continuous version of the original memory network: soft attention instead 
of hard 

• Supervision only at input-output level, more practical

Single Layer Three Layers
Params: A, B, C, W



Key-Value Memory Networks 
[Miller et al., EMNLP 2016]

 

• Structural memory: (key, value), otherwise similar to MemN2N 

• Addressing is based on key, reading is based on value

 



Knowledge Graph Construction Efforts

 16

High Supervision

Low Supervision

Amazon

NELL



Two Views of Knowledge

Knowledge Graph

GM

Toyota

competes 
with

Dense Representations



Knowledge Graph Embedding 
[Surveys: Wang et al., TKDE 2017, ThuNLP]

fr(h , t)Triple scoring function: 
Positive triples

Negative triples

h + r ≈ t

(h, r, t) = (Barack Obama, presidentOf, USA)



Knowledge Graph Embedding 
[Surveys: Wang et al., TKDE 2017, ThuNLP]



Using KG for Document Classification 
[Annervaz et al., NAACL 2018]

SNLI

News20

Incorporation of word knowledge 
helps improve deep learning 

performance



Knowledge-aware Visual Question Answering 
[Shah et al., AAAI 2019]

KVQA 
[http://malllabiisc.github.io/resources/kvqa/]

New Dataset for Knowledge-aware 

Computer Vision


KVQA Dataset 
• 24k+ images 
• 19.5k+ unique answers 
• 183k+ QA pairs



Visual entity linking
VQA over KG

Requires reasoning over KG. Significant room for improvement.



Research Issues
• Continual Learning and Catastrophic Forgetting 

• (External) Knowledge and Reasoning 

• Representation Learning 

• States 

• Sequences  

• Self Reflection 

• Curriculum Learning



Deep Reinforcement Learning 
[Mnih et al., NeurIPS 2013, Mnih et al., Nature 2015] 

Deep Q Network (DQN) Q(s, a; θi)



DQN on 49 Atari Games
•More predictive state 

representation using 
deep CNN 

•Trained on random 
samples of past plays: 
Experience replay 

•Super-human 
performance on many 
tasks using same 
network (trained 
separately) 

•Limitation: requires lots 
of replays to learn



Learning Word Meanings

[Collobert et al., 2011][Bengio et al., 2003][Deerwester et al., 1988]

Representing word meanings as vectors utilizing its context 
has a long history [Harris, 1954]



Representation Learning in NLP 
Word2Vec [Mikolov et al., 2013a; Mikolov et al., NeurIPS 2013b]

• Learn word embeddings by creating word prediction 
problems out of unlabeled corpus 

• Big impact in NLP, lots of subsequent work, e.g., Glove, 



Representations using Self-Attention 
Transformers [Vaswani et al., NeurIPS 2018]

 Image Credit: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Self Attention



Representation Learning in NLP 
BERT [Devlin et al., NAACL 2019]

Predict Next Sentence
Predict Masked Tokens

Downstream Tasks



Pre-trained embeddings fine tuned further can be an 
effective transfer model

https://gluebenchmark.com/leaderboard/



Research Issues
• Continual Learning and Catastrophic Forgetting 

• (External) Knowledge and Reasoning 

• Representation Learning 

• Self Reflection 

• Curriculum Learning



Learning to Learn by GD by GD 
[Andrychowicz et al., NeurIPS 2016]

Optimizer  
parametersOptimizee  

parameters

θ*( f, ϕ)



Learning to Learn by GD by GD 
[Andrychowicz et al., NeurIPS 2016]

RNN



Learning Plateaus
• Learning Plateau: a point where further learning iteration doesn’t help  

• How to detect learning plateaus? 

• detect learning impasse (e.g., SOAR) 

• check change in learning parameters or other metric (e.g., 
consistency [Platanios et al., 2014]) 

• How to resolve learning plateaus? 

• switch from exploitation to exploration (especially if local optimum) 

• induce new learning task to resolve impasse (as in SOAR) 

• update knowledge representation 

• ask for help (humans or other agents)



Research Issues
• Continual Learning and Catastrophic Forgetting 

• (External) Knowledge and Reasoning 

• Representation Learning 

• Self Reflection 

• Curriculum Learning



Curriculum Learning 
[Bengio et al., ICML 2009]

• Previously explored in cognitive science [Elman 1993], animal 
training “shaping” [Skinner, 1958] 

• Can help with speed and quality of optimization (especially in 
non-convex settings) 

• Curriculum Learning in NELL: relation induction, Horn clause 
learning, etc. 

• Challenges: defining what is easy, determining curriculum 
order => addressed in [Graves et al., ICML 2017]

Start small (or easy), then gradually increase difficulty



Curiosity-driven Learning 
[Pathak et al., ICML 2017; Burda et al., ICLR 2019]

• Curiosity is modeled as the model’s ability to predict 
consequences of own action 

• Useful with very sparse or no external reward 

• However, requires repeated interactions with the environment



Research Issues
• Continual Learning and Catastrophic Forgetting 

• (External) Knowledge and Reasoning 

• Representation Learning 

• Self Reflection 

• Curriculum Learning



Resources
• Books & websites 

• Lifelong Machine Learning [Chen and Liu, 2018] 

• Learning to Learn [Thrun 1998] 

• LifeLongML.org 

• The SOAR Cognitive Architecture [Laird, 2012] 

• Surveys 

• Continual learning in Neural Networks [Parisi et al., 2019] 

• Lifelong Learning [Silver, 2013] 

• KG Embedding [Wang et al., 2017]



Resources
• Recent Workshops & Tutorials 

• ICML 2018 Workshop on Lifelong RL 

• NeurIPS 2018 MetaLearn 

• NeurIPS 2018 Workshop on Continual Learning 

• NeurIPS 2018 Tutorial on AutoML 

• ICML 2019 Workshop on MTL and Lifelong RL 

• ICML 2019 Workshop on Adaptive and MTL



PhD Thesis Topics in NEL
• What is the effect of different types of coupling constraints (e.g., output 

coupling, parameter coupling, coupling across time) on learning? 

• How to perform coupled learning at scale? 

• How should a NEL agent add additional learning tasks? 

• Given unlabeled data, is estimating accuracy inherently harder than 
learning? 

• How to incorporate curiosity in a NEL agent? 

• How to build a cooperative community of NEL agents? 

• What are the sufficient modes of self-reflection? 

• How can a NEL agent exploit multiple modalities? 

• How should a NEL agent communicate with humans?



Thanks!
https://sites.google.com/site/neltutorialicml19/ 

tom.mitchell@cs.cmu.edu, ppt@iisc.ac.in


