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Example: Fruit Fly Genetics

Hao et al. (2008) measured the effect of 13,000 fruit fly genes on 
susceptibility to influenza

Measurements were distributed N(0,1) under the null, higher indicates 
protection from influenza

Observed distribution does not match theoretical null

𝑁 0, 1 Too small to claim 
individual significance
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Example: Fruit Fly Genetics

Idea: These genes can be counted,

even though they can’t be identified

Next Experiment: Take precise measurements (e.g., 
use many replications) to identify these genes

Next Experiment: Take less precise 
measurements, identify fewer genes

Enables power analysis for 

future experimental designs

>2% of genes have effect size >1 
(at least 28% increase in influenza resistance)

>7% of genes have effect size >1/4 
(at least 8% increase in influenza resistance)

Our Estimator
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Formal problem statement

We view multiple hypothesis testing from the perspective of learning 
mixture distributions

For 𝑖 = 1, 2, … , 𝑛

Draw 𝜇𝑖 ∼ 𝜈∗ 𝜇𝑖 is the (unknown) effect size

Observe 𝑋𝑖 ∼ 𝑓(𝜇𝑖) E.g. 𝑓 𝜇𝑖 = 𝑁(𝜇𝑖 , 1)

Goal

Estimate 𝜁𝜈∗ 𝛾 = 𝑃𝜇∼𝜈∗(𝜇 > 𝛾), for all 𝛾

Constraint Never overestimate the true fraction
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Our Estimator
Goal Estimate

Constraint Never overestimate

Step 1 Consider the empirical CDF (Cumulative Distribution Function)
Step 2 Generate confidence intervals on the true CDF

With high probability, the true 

CDF lives within this interval

This could be 

the true CDF

N(0,1) could not

be the true CDF
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Theorem

Our estimator provides the following guarantees:
With probability 1 − 𝛼, does not overestimate 𝜁𝜈∗ 𝛾 for any 𝛾

With probability 1 − 𝛿, estimate is at most 𝜺 from the truth whenever

𝐹𝜈∗

Minimum ℓ∞ distance

CDFs 𝐹𝜈 corresponding to 

all mixing distributions 𝜈
with less than 𝜁𝜈∗ 𝛾 − 𝜀

probability mass above 𝛾 Goal: lower bound this distance
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Counting at least half of the discoveries

Let 𝑋𝑖~𝑁(𝜇𝑖 , 1) be drawn from a mixture of Gaussians, with 𝜁∗
alternate hypotheses of effect size 𝛾∗ < 1

With probability at least 1 − 𝛿, our estimator detects over half of the 

alternate hypotheses (i.e., መ𝜁𝑛 0 >
1

2
𝜁∗), whenever

Matches a novel lower bound
𝛾∗

𝜁∗

How much mass is 

(strictly) above 0?
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Each school has some 𝜇𝑖 indicating its students’ true performance

We observe 𝑋𝑖, a noisy measurement of 𝜇𝑖 (e.g., students’ average exam score)

Our estimator: “at least Y% of schools are below proficient in math”

Interesting on its own, or to suggest further testing to identify these schools
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Standardized Testing
Each school has some 𝜇𝑖 indicating its students’ true performance

We observe 𝑋𝑖, a noisy measurement of 𝜇𝑖 (e.g., students’ average exam score)

Our estimator: “at least Y% of schools are below proficient in math”

Interesting on its own, or to suggest further testing to identify these schools

Public Health*
Each person has some 𝜇𝑖 indicating their susceptibility to the flu (variable due 
to age, health, etc.)

We observe 𝑋𝑖, the number of flu seasons they were sick, in the past five years

Our estimator: “at most Y% of people have a 25% chance or greater of getting 
sick in a given year” (Impossible to identify these people with confidence)

*Example due to Tian, Kong and Valiant (2017)


