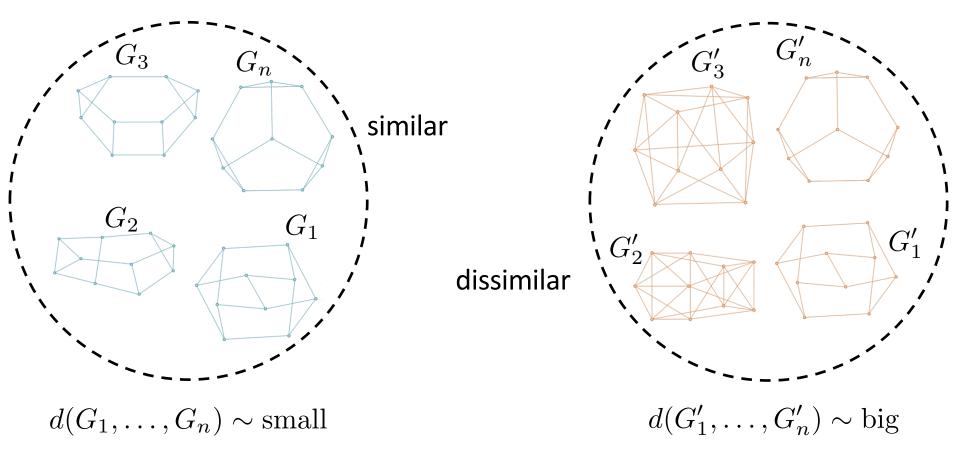
Problem



Additional goals

Find an association among The association among graph nodes to show why graphs are similar. This allows, e.g., knowledge transfer.

 p_2

inferred

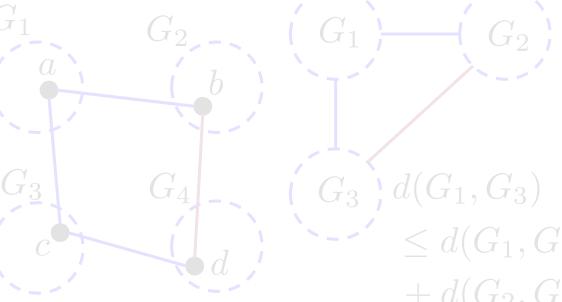
function

for p_5'

known

function

be consistent.



The distance function

should satisfy intuitive

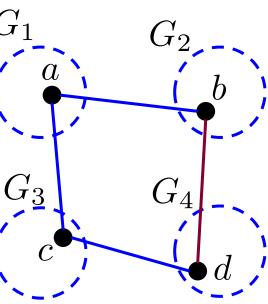
properties of *metrics*.

Additional goals

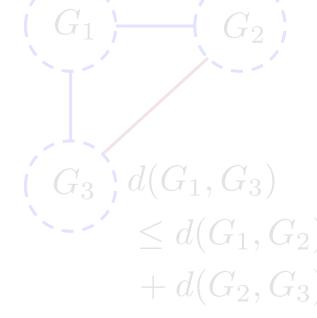
The association among

Find an association among graph nodes to show why transfer.

multiple graphs should be consistent.



The distance function should satisfy intuitive properties of *metrics*.

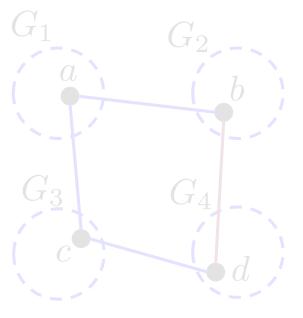


Additional goals

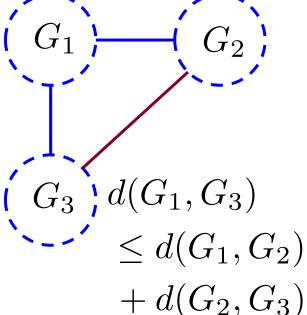
Find an association among The association among graph nodes to show why

transfer.

be consistent.

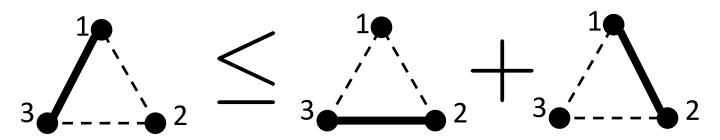


The distance function should satisfy intuitive properties of *metrics*.

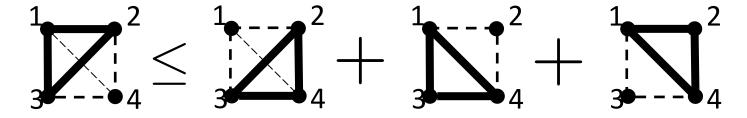


n-metrics

$$d(G_1, G_3) \le d(G_1, G_2) + d(G_2, G_3)$$



$$d(G_1, G_2, G_3) \le d(G_2, G_3, G_4) + d(G_1, G_3, G_4) + d(G_1, G_2, G_4)$$

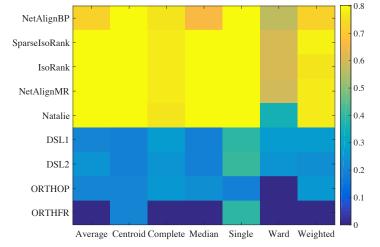


Why is this important?

1. Some algorithms can use the metric property to save computation time. E.g. a simple randomized algorithm can solve $\max_{G_1,G_2\in S}d(G_1,G_2)$ in

$$\mathcal{O}(|S|)$$
 (1/2-approx. in expectation) v.s. $\mathcal{O}(|S|^2)$

2. Some algorithms show better accuracy when using metrics.



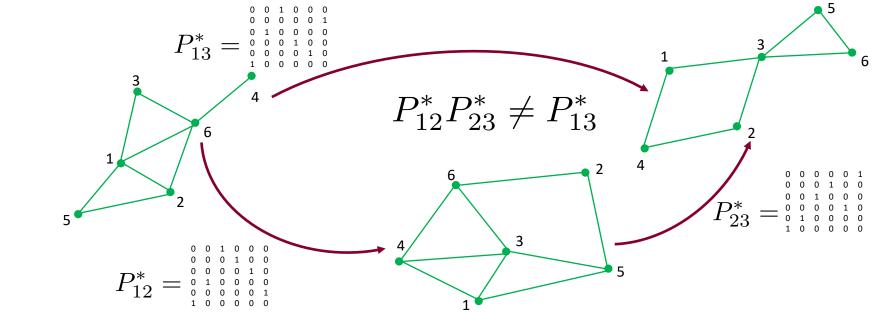
E.g. we can cluster graphs using distance-based clustering, and when we do so, we observe that using metrics results in better clustering performance than when using non-metrics.

Attempt 1

Given a metric $d(G_i, G_j)$, an easy way to obtain an n-metric is to define

$$d(G_1, \dots, G_n) = \sum_{(i,j)} d(G_i, G_j)$$
 ?

If $d(G_i, G_j)$ returns an assignment P_{ij} , we might not have consistency.

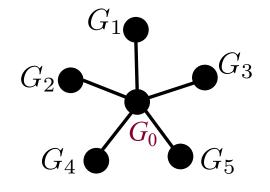


Attempt 2

Another easy way to obtain an n-metric is to define

$$d(G_1, \dots, G_n) = \min_{G_0} \sum_{i=1} d(G_i, G_0)$$

This is called the Fermat distance associated with d.



We want G_0 to be close to all of the G_i 's. If we can find such a G_0 , then the graphs are similar. If $d(G_i, G_0)$ returns an assignment P_{i0} , and we define $P_{ij} = P_{i0}(P_{j0})^{\mathrm{T}}$ then we have consistency.

However, the optimization over G_0 makes this definition hard to use.

Our definition: g-align

Under an appropriate choice of C, the following are n-metrics, reduce to solving a convex optimization problem, and satisfy a relaxed notion of alignment consistency.

$$d(G_{1},...,G_{n}) = \min_{\substack{P_{i,j} \in \mathcal{C} \\ P_{i,i} = I \\ \mathbf{P} \succeq 0}} \frac{1}{2} \sum_{i,j \in [n]} ||A_{i}P_{i,j} - P_{i,j}A_{j}||$$

$$d(G_{1},...,G_{n}) = \min_{\substack{P_{i,j} \in \mathcal{C} \\ P_{i,i} = I \\ ||\mathbf{P}||_{*} < mn}} \frac{1}{2} \sum_{i,j \in [n]} ||A_{i}P_{i,j} - P_{i,j}A_{j}||$$

C = some convex set of matrices

For details, check Thursday's poster session Pacific Ballroom #145