Online Algorithms for Rent or Buy
with Expert Advice

Sreenivas Gollapudi

Debmalya Panigrahi

Google

Duke University
How to optimize for an unknown future?
How to optimize for an unknown future?

<table>
<thead>
<tr>
<th>Online Algorithms</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Optimize for the worst possible (adversarial) future</td>
<td>• Use the past to predict the future, and optimize for the predicted future</td>
</tr>
<tr>
<td>• Competitive ratio = Online Algorithm / Offline Optimum</td>
<td>• Approximation ratio = Offline Algorithm / Offline Optimum</td>
</tr>
</tbody>
</table>

+ **Very robust** (guarantees hold no matter what)
- **Pessimistic** (nature is not adversarial!)

+ **Optimistic** (approx. ratio \ll comp. ratio for most problems)
- **Not robust** (no guarantees if predictions are inaccurate)
Online Algorithms with Predictions

Consistency: If the prediction are accurate, then the algorithm should perform as well as the best offline solution.

Robustness: Irrespective of the accuracy of the prediction, the algorithm should perform as well as the best online solution.

Graceful degradation: The performance of the algorithm should gracefully degrade with the accuracy of the prediction.
Online Algorithms with Multiple Predictions

- Multiple ML models/human experts make predictions about the future
- The predictions may be completely different from one another
- The algorithm has no information about the *absolute* or *relative* quality of the predictions

Consistency: If any of the predictions is accurate, then the algorithm should perform as well as the best offline solution

Robustness: Irrespective of the accuracy of the predictions, the algorithm should perform as well as the best online solution

Graceful degradation: The performance of the algorithm should gracefully degrade with the accuracy of the best prediction
A Single Parameter Problem: Rent or Buy (a.k.a. Ski-rental)

- It costs
 - $1 to rent skis for a day
 - $B to buy skis for the season
- Length of ski season is S
- Offline optimum
 - If $S \geq B$, buy on day 1
 - If $S < B$, rent every day
- Unknown future: The algorithm gets to know S only when the ski season ends
- Online algorithm (existing results)
 - Competitive ratio of 2 for deterministic algorithms
 - Competitive ratio of $\frac{e}{e-1}$ for randomized algorithms
A Single Parameter Problem: Rent or Buy (a.k.a. Ski-rental)

• It costs
 • $1 to rent skis for a day
 • $B to buy skis for the season
• Length of ski season is S
• Offline optimum
 • If $S \geq B$, buy on day 1
 • If $S < B$, rent every day
• Unknown future: The algorithm gets to know S only when the ski season ends

• Online algorithm (existing results)
 • Competitive ratio of 2 for deterministic algorithms
 • Competitive ratio of $\frac{e}{e-1}$ for randomized algorithms

• Online algorithm with multiple predictions (this work)
 • k predictions
 • $k=1$: consistency of 1 achieved by assuming the expert is accurate and using the offline algorithm [Purohit et al. ’18 shows how to achieve robustness in this setting]
 • $k=\infty$: experts can make all possible predictions, hence it reduces to the classical setting (without predictions)
 • What can we say for finite $k > 1$? Can we add robustness and graceful degradation for $k > 1$?
 • What is a good value of k?
 • Under independent Gaussian error, we show that k between 2 and 4 achieves significant improvements over $k < 2$
Rent or Buy with Multiple Predictions

Consistency: For \(k \) predictions, we give an \(\eta_k \)-consistent **deterministic** algorithm where:
- \(\eta_1 = 1 \)
- \(\lim_{k \to \infty} \eta_k = 2 \)
- \(\eta_k \) is an increasing sequence
- No deterministic algorithm can achieve consistency better than \(\eta_k \) for \(k \) predictions

\[\eta_k = \frac{1 + \sqrt{5}}{2} \]
(golden ratio)

Consistency: For \(k \) predictions, we give a \(\mu_k \)-consistent **randomized** algorithm where:
- \(\mu_1 = 1 \)
- \(\lim_{k \to \infty} \mu_k = \frac{e}{e-1} \)
- \(\mu_k \) is an increasing sequence
- No randomized algorithm can achieve consistency better than \(\mu_k \) for \(k \) predictions

\[\mu_k = \frac{\frac{3}{4}}{\frac{3}{4}} \]
Rent or Buy with Multiple Predictions

Consistency: For \(k \) predictions, we give an \(\eta_k \)-consistent deterministic algorithm where:
- \(\eta_1 = 1 \)
- \(\lim_{k \to \infty} \eta_k = 2 \)
- \(\eta_k \) is an increasing sequence
- No deterministic algorithm can achieve consistency better than \(\eta_k \) for \(k \) predictions

Graceful degradation: For \(k \) predictions, we give a deterministic algorithm with \(\text{alg} \leq Y_k (\text{opt} + \text{err}) \) where:
- \(Y_1 = \frac{3}{2} \)
- \(\lim_{k \to \infty} Y_k = 2 \)
- \(Y_k \) is an increasing sequence, \(Y_k > \eta_k \) for finite \(k \)
- No deterministic algorithm can achieve a ratio better than \(Y_k \) for \(\frac{\text{alg}}{\text{opt} + \text{err}} \) for \(k \) predictions

Consistency: For \(k \) predictions, we give a \(\mu_k \)-consistent randomized algorithm where:
- \(\mu_1 = 1 \)
- \(\lim_{k \to \infty} \mu_k = \frac{e}{e-1} \)
- \(\mu_k \) is an increasing sequence
- No randomized algorithm can achieve consistency better than \(\mu_k \) for \(k \) predictions

Robustness: For \(k \) predictions, we give a deterministic algorithm such for that any \(0 < \lambda < 1 \):
- \(\text{alg} \leq \left(1 + \frac{1}{\lambda} \right) \text{opt} \) in all situations
- \(\text{alg} \leq \rho_{k,\lambda} \text{opt} \) if the best prediction has 0 error
- \(\rho_{k,\lambda} \) is an increasing sequence, \(\rho_{k,\lambda} > \eta_k \) for finite \(k \)
- No deterministic algorithm can simultaneously achieve consistency ratio \(\leq \rho_{k,\lambda} \) and robustness ratio \(\leq \left(1 + \frac{1}{\lambda} \right) \) for \(k \) predictions
Future Work

• Multiple predictions in other online optimization problems
 • Caching (Lykouris and Vassilvitskii consider the single prediction case)
 • Scheduling/Load Balancing (Purohit et al. consider one variant for single prediction, but several variants are open even for single prediction)
 • k-server (single prediction is open)

• Incorporate prediction costs – multi-armed bandit models for online optimization?

• Other interfaces between online algorithms and online learning
 • Smoothed Online Convex Optimization
 • Other models?
thank you

questions?