Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously

Julian Zimmert (University of Copenhagen)
Haipeng Luo (University of Southern California)
Chen-Yu Wei (University of Southern California)
Semi-bandits Example

Goal: minimize the average commuting time
Types of Environments

i.i.d. (more benign)

Algorithms for i.i.d.: perform bad in the adversarial case.
Algorithms for adversarial: when the environment is i.i.d., they do not take advantage of it.
Types of Environments

i.i.d.
(more benign)

Algorithms for i.i.d.: perform bad in the adversarial case.
Algorithms for adversarial: when the environment is i.i.d., they do not take advantage of it.

⇒ To achieve optimal performance, they need to know which environments they are in and pick the corresponding algorithms.
Motivation

What if

1. We have no prior knowledge about the environment.
2. The environment is usually i.i.d., but we want to be robust to adversarial attack.
3. The environment is usually arbitrary but we want to exploit the benignness when we got lucky.
Our Results

- We propose the first semi-bandit algorithm that has optimal performance guarantees in both i.i.d. and adversarial environments, without knowing which environment it is in.
Formalizing Semi-bandits

Given: action set \(\mathcal{X} = \{ X^{(1)}, X^{(2)}, \ldots \} \subseteq \{0, 1\}^d \).

For \(t = 1, \ldots, T \),

- The learner chooses \(X_t \in \mathcal{X} \).
- The environment reveals \(\ell_{ti} \) for which \(X_{ti} = 1 \).
- The learner suffers loss \(\langle X_t, \ell_t \rangle \).

\(d = \#\text{edges} \)
Formalizing Semi-bandits

Given: action set $\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots \} \subseteq \{0, 1\}^d$. (set of all paths)
For $t = 1, \ldots, T$,

- The learner chooses $X_t \in \mathcal{X}$.
- The environment reveals ℓ_{ti} for which $X_{ti} = 1$.
- The learner suffers loss $\langle X_t, \ell_t \rangle$.

$\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots \} \subseteq \{0, 1\}^d$. (set of all paths)
For $t = 1, \ldots, T$,

- The learner chooses $X_t \in \mathcal{X}$.
- The environment reveals ℓ_{ti} for which $X_{ti} = 1$.
- The learner suffers loss $\langle X_t, \ell_t \rangle$.

$\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots \} \subseteq \{0, 1\}^d$. (set of all paths)
For $t = 1, \ldots, T$,

- The learner chooses $X_t \in \mathcal{X}$.
- The environment reveals ℓ_{ti} for which $X_{ti} = 1$.
- The learner suffers loss $\langle X_t, \ell_t \rangle$.
Formalizing Semi-bandits

Given: action set $\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots\} \subseteq \{0, 1\}^d$. (set of all paths)

For $t = 1, \ldots, T$,

- The learner chooses $X_t \in \mathcal{X}$ (choose a path).
- The environment reveals ℓ_{ti} for which $X_{ti} = 1$.
- The learner suffers loss $\langle X_t, \ell_t \rangle$.

\[d = \#\text{edges} \]
Formalizing Semi-bandits

Given: action set $\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots\} \subseteq \{0, 1\}^d$. (set of all paths)

For $t = 1, \ldots, T$,

- The learner chooses $X_t \in \mathcal{X}$ (choose a path).
- The environment reveals ℓ_{ti} for which $X_{ti} = 1$. (reveal the cost on each chosen edge)
- The learner suffers loss $\langle X_t, \ell_t \rangle$.

\[d = \#\text{edges} \]
Formalizing Semi-bandits

Given: action set \(\mathcal{X} = \{X^{(1)}, X^{(2)}, \ldots \} \subseteq \{0, 1\}^d \). (set of all paths)

For \(t = 1, \ldots, T \),

- The learner chooses \(X_t \in \mathcal{X} \) (choose a path).
- The environment reveals \(\ell_{ti} \) for which \(X_{ti} = 1 \). (reveal the cost on each chosen edge)
- The learner suffers loss \(\langle X_t, \ell_t \rangle \). (suffer the path cost)

![Diagram](image-url)
Semi-bandits Regret Bounds

Goal: Minimize

\[
\text{Regret} = \mathbb{E}\left[\sum_{t=1}^{T} \langle X_t, \ell_t \rangle \right] - \min_{X \in \mathcal{X}} \mathbb{E}\left[\sum_{t=1}^{T} \langle X, \ell_t \rangle \right].
\]

- Learner's total cost
- Best fixed action's total cost

- When \(\ell_t \) are i.i.d.: \(\text{Regret} = \Theta(\log T) \)
- When \(\ell_t \) are adversarially generated: \(\text{Regret} = \Theta\left(\sqrt{T}\right) \)

Our algorithm: always has \(O(\sqrt{T}) \), but gets \(O(\log T) \) when the losses happen to be i.i.d.
Related Work in Multi-armed Bandit (MAB)

MAB is special case of SB with $\mathcal{X} = \{e_1, \ldots, e_d\}$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAO [BS12]</td>
<td>i.i.d. algorithm + non-i.i.d. detection</td>
</tr>
<tr>
<td>EXP3++ [SS14, SL17]</td>
<td>adversarial algorithm (EXP3) + sophisticated exploration mechanism</td>
</tr>
<tr>
<td>BROAD [WL18]</td>
<td>adversarial algorithm (FTRL with special regularizer) + improved analysis</td>
</tr>
<tr>
<td>T-INF [ZS19]</td>
<td>optimal adversarial algorithm</td>
</tr>
</tbody>
</table>

Our work is a generalization of [WL18] and [ZS19]'s idea to semi-bandits.
Related Work in Multi-armed Bandit (MAB)

MAB is special case of SB with $\mathcal{X} = \{e_1, \ldots, e_d\}$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAO [BS12]</td>
<td>i.i.d. algorithm + non-i.i.d. detection</td>
</tr>
<tr>
<td>SAPO [AC16]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related Work in Multi-armed Bandit (MAB)

MAB is special case of SB with $\mathcal{X} = \{e_1, \ldots, e_d\}$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAO [BS12]</td>
<td>i.i.d. algorithm + non-i.i.d. detection</td>
</tr>
<tr>
<td>SAPO [AC16]</td>
<td></td>
</tr>
<tr>
<td>EXP3++ [SS14, SL17]</td>
<td>adversarial algorithm (EXP3) +</td>
</tr>
<tr>
<td></td>
<td>sophisticated exploration mechanism</td>
</tr>
<tr>
<td>BROAD [WL18]</td>
<td>(optimal)</td>
</tr>
<tr>
<td>T-INF [ZS19]</td>
<td>adversarial algorithm (FTRL with</td>
</tr>
<tr>
<td></td>
<td>special regularizer)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Our work</td>
<td></td>
</tr>
</tbody>
</table>
Related Work in Multi-armed Bandit (MAB)

MAB is special case of SB with $\mathcal{X} = \{e_1, \ldots, e_d\}$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAO [BS12]</td>
<td>i.i.d. algorithm + non-i.i.d. detection</td>
</tr>
<tr>
<td>SAPO [AC16]</td>
<td></td>
</tr>
<tr>
<td>EXP3++ [SS14, SL17]</td>
<td>adversarial algorithm (EXP3) + sophisticated exploration mechanism</td>
</tr>
<tr>
<td>BROAD [WL18]</td>
<td>adversarial algorithm (FTRL with special regularizer) + improved analysis</td>
</tr>
<tr>
<td>T-INF [ZS19] (optimal)</td>
<td></td>
</tr>
</tbody>
</table>
MAB is special case of SB with $\mathcal{X} = \{e_1, \ldots, e_d\}$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAO [BS12]</td>
<td>i.i.d. algorithm + non-i.i.d. detection</td>
</tr>
<tr>
<td>SAPO [AC16]</td>
<td></td>
</tr>
<tr>
<td>EXP3++ [SS14, SL17]</td>
<td>adversarial algorithm (EXP3) + sophisticated exploration mechanism</td>
</tr>
<tr>
<td>BROAD [WL18]</td>
<td>adversarial algorithm (FTRL with special regularizer) + improved analysis</td>
</tr>
<tr>
<td>T-INF [ZS19] (optimal)</td>
<td></td>
</tr>
</tbody>
</table>

Our work is a generalization of [WL18] and [ZS19]'s idea to semi-bandits.
Algorithm

Following the Regularized Leader

Learning rate $\eta_t = 1/\sqrt{t}$, regularizer Ψ
Algorithm

Following the Regularized Leader

Learning rate $\eta_t = \frac{1}{\sqrt{t}}$, regularizer Ψ

for $t = 1, 2, 3, \ldots$

Compute

$$x_t = \arg\min_{x \in \text{Conv}(\mathcal{X})} \left\langle x, \sum_{s=1}^{t-1} \hat{\ell}_s \right\rangle + \eta_t^{-1} \Psi(x).$$
Algorithm

Following the Regularized Leader

Learning rate $\eta_t = 1/\sqrt{t}$, regularizer Ψ
for $t = 1, 2, 3, \ldots$

- Compute

$$x_t = \arg\min_{x \in \text{Conv}(\mathcal{X})} \left\langle x, \sum_{s=1}^{t-1} \hat{l}_s \right\rangle + \eta_t^{-1} \Psi(x).$$

- Sample X_t such that $\mathbb{E}[X_t] = x_t$, and observe l_{ti} for i with $X_{ti} = 1$.
Algorithm

Following the Regularized Leader

Learning rate $\eta_t = 1/\sqrt{t}$, regularizer Ψ

for $t = 1, 2, 3, \ldots$

▶ Compute

$$x_t = \arg\min_{x \in \text{Conv}(\mathcal{X})} \left\langle x, \sum_{s=1}^{t-1} \hat{\ell}_s \right\rangle + \eta_t^{-1} \Psi(x).$$

▶ Sample X_t such that $\mathbb{E}[X_t] = x_t$,
and observe ℓ_{ti} for i with $X_{ti} = 1$.

▶ Construct ℓ_t's unbiased estimator $\hat{\ell}_t$: $\hat{\ell}_{ti} = \frac{\ell_{ti} 1[X_{ti}=1]}{x_{ti}}$.
Regularizer (Key Contribution)

Two-sided hybrid regularizer:

\[\Psi(x) = \sum_{i=1}^{d} -\sqrt{x_i} + \sum_{i=1}^{d} (1 - x_i) \log(1 - x_i). \]

- \([AB09]'s\ Poly-INF\)
- Neg-entropy for complement

Intuition:
▶ when \(x_i\) is close to 0, the learner starves for information ⇒ like a bandit problem ⇒ using the optimal regularizer for bandit (Poly-INF)
▶ when \(x_i\) is close to 1 ⇒ like a full-info problem ⇒ using the optimal regularizer for full-info (Neg-entropy)
Regularizer (Key Contribution)

Two-sided hybrid regularizer:

\[
\Psi(x) = \sum_{i=1}^{d} -\sqrt{x_i} + \sum_{i=1}^{d} (1 - x_i) \log(1 - x_i).
\]

[Intuition:

- when \(x_i\) is close to 0, the learner starves for information
 \(\Rightarrow\) like a bandit problem
 \(\Rightarrow\) using the optimal regularizer for bandit (Poly-INF)

- when \(x_i\) is close to 1
 \(\Rightarrow\) like a full-info problem
 \(\Rightarrow\) using the optimal regularizer for full-info (Neg-entropy)
Results Overview

<table>
<thead>
<tr>
<th>Env.</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d.</td>
<td>$\frac{md \log T}{\Delta_{\text{min}}}$</td>
</tr>
<tr>
<td>Adversarial</td>
<td>\sqrt{mdT}</td>
</tr>
</tbody>
</table>

$m \triangleq \max_{X \in \mathcal{X}} \|X\|_1.$

$\Delta_{\text{min}} = \mathbb{E}[\text{second-best action's loss}] - \mathbb{E}[\text{best action's loss}]$ (minimal optimality gap)
Results Overview

<table>
<thead>
<tr>
<th>Env.</th>
<th>\mathcal{X}</th>
<th>General</th>
<th>${X \in {0, 1}^d : |X|_1 = m}$</th>
<th>${0, 1}^d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d.</td>
<td>$\frac{md \log T}{\Delta_{\text{min}}}$</td>
<td>$\sum_{i > m} \frac{\log T}{\Delta_i}$</td>
<td>$\sum_i \frac{\log T}{\Delta_i}$</td>
<td></td>
</tr>
<tr>
<td>Adversarial</td>
<td>\sqrt{mdT}</td>
<td>$\begin{cases} \sqrt{mdT}, & m \leq \frac{d}{2} \ (d - m)\sqrt{T \log d}, & m > \frac{d}{2}\end{cases}$</td>
<td>$d\sqrt{T}$</td>
<td></td>
</tr>
</tbody>
</table>

$m \triangleq \max_{X \in \mathcal{X}} \|X\|_1$.

$\Delta_{\text{min}} = \mathbb{E}[\text{second-best action's loss}] - \mathbb{E}[\text{best action's loss}]$ (minimal optimality gap)
Results Overview

<table>
<thead>
<tr>
<th>Env.</th>
<th>General</th>
<th>${X \in {0, 1}^d : |X|_1 = m}$</th>
<th>${0, 1}^d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d.</td>
<td>$\frac{md \log T}{\Delta_{\min}}$</td>
<td>$\sum_{i>m} \frac{\log i}{\Delta_i}$</td>
<td>$\sum_{i} \frac{\log i}{\Delta_i}$</td>
</tr>
<tr>
<td>Adversarial</td>
<td>\sqrt{mdT}</td>
<td>$\begin{cases} \sqrt{mdT}, & m \leq \frac{d}{2} \ (d-m)\sqrt{T \log d}, & m > \frac{d}{2} \end{cases}$</td>
<td>$d\sqrt{T}$</td>
</tr>
</tbody>
</table>

$m \triangleq \max_{X \in X} \|X\|_1.$

$\Delta_{\min} = \mathbb{E}[\text{second-best action's loss}] - \mathbb{E}[\text{best action's loss}]$ (minimal optimality gap)
Analysis Steps

1. Analyze FTRL for the new regularizer and get $O(\sqrt{T})$ for the adversarial setting.

2. Further use self-bounding technique to get $O(\log T)$ for the i.i.d. setting.
Analyzing FTRL for the New Regularizer

Key lemma.

\[\text{Reg} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \sum_{i} \min \left\{ \sqrt{x_{ti}}, \ (1 - x_{ti}) \left(1 + \log \frac{1}{1 - x_{ti}}\right) \right\}. \]

Remarks.

1. The analysis is mostly standard, but needs more care (don’t drop some terms as did in usual analysis).
2. The \textbf{two-sided}-ness of the regularizer is the key to get “\text{min}\{\cdot, \cdot\}”.
3. From this bound, we get \(O(\sqrt{T}) \) bound easily.
Self-bounding to Get $O(\log T)$ Bound

Reg $\leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \sum_{i} \min \left\{ \sqrt{x_{ti}}, \left(1 - x_{ti}\right) \left(1 + \log \frac{1}{1 - x_{ti}}\right) \right\}$

Goal: upper bound this by $C \sqrt{\Pr[X_t \neq X^*]}$

Intuitively true: $\Pr[X_t \neq X^*] \to 0$

$\Rightarrow x_t \to X^*$

\Rightarrow the above expression $\to 0$.
Self-bounding to Get $O(\log T)$ Bound

\[
\text{Reg} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \sum_{i} \min \left\{ \sqrt{x_{ti}}, \ (1 - x_{ti}) \left(1 + \log \frac{1}{1 - x_{ti}}\right) \right\}
\]

Goal: upper bound this by $C \sqrt{\Pr[X_t \neq X^*]}$

Assume it is proved...
Self-bounding to Get $O(\log T)$ Bound

\[
\text{Reg} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \sum_i \min \left \{ \sqrt{x_{ti}}, \ (1 - x_{ti}) \left (1 + \log \frac{1}{1 - x_{ti}} \right) \right \}
\]

\textbf{Goal:} upper bound this by $C \sqrt{\Pr[X_t \neq X^*]}$

Assume it is proved...

\[
\sum_{t} \Delta_{\min} \Pr[X_t \neq X^*] \leq \text{Reg}
\]
Self-bounding to Get $O(\log T)$ Bound

\[\text{Reg} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \sum_{i} \min \left\{ \sqrt{x_{ti}}, \quad (1 - x_{ti}) \left(1 + \log \frac{1}{1 - x_{ti}}\right) \right\} \]

Goal: upper bound this by $C \sqrt{\text{Pr}[X_t \neq X^*]}$

Assume it is proved...

\[\sum_{t} \Delta_{\text{min}} \text{Pr}[X_t \neq X^*] \leq \text{Reg} \leq \sum_{t} C \sqrt{\text{Pr}[X_t \neq X^*]} \]

\[\leq \sum_{t} \frac{C^2}{2t\Delta_{\text{min}}} + \sum_{t} \frac{\Delta_{\text{min}} \text{Pr}[X_t \neq X^*]}{2} \]

(AM-GM)
Self-bounding to Get $O(\log T)$ Bound

\[
\text{Reg} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \sum_{i} \min \left\{ \sqrt{x_{ti}}, (1 - x_{ti}) \left(1 + \log \frac{1}{1 - x_{ti}} \right) \right\}
\]

Goal: upper bound this by $C \sqrt{\text{Pr}[X_t \neq X^*]}$

Assume it is proved...

\[
\sum_t \Delta_{\min} \text{Pr}[X_t \neq X^*] \leq \text{Reg} \leq \sum_t \frac{C \sqrt{\text{Pr}[X_t \neq X^*]}}{\sqrt{t}}
\]

\[
\leq \sum_t \frac{C^2}{2t\Delta_{\min}} + \sum_t \frac{\Delta_{\min} \text{Pr}[X_t \neq X^*]}{2}
\]

(AM-GM)

Thus, \[
\sum_t \Delta_{\min} \text{Pr}[X_t \neq X^*] \leq \sum_{t=1}^{T} \frac{C^2}{t\Delta_{\min}} = \frac{C^2 \log T}{\Delta_{\min}}
\]

\[
\implies \text{Reg} \leq \frac{C^2 \log T}{\Delta_{\min}}.
\]
Experiments (regret vs. time)

i.i.d.

- Exp2
- Cucb
- LogBar
- TS
- Ours

Non-i.i.d.

- Exp2
- Cucb
- LogBar
- TS
- Ours
Summary

- This paper considers semi-bandits, and proposes the first single algorithm that has optimal regret guarantees both in adversarial and i.i.d. environments.
- The algorithm is a simple instantiation of the Follow the Regularized Leader framework. The keys to get $O(\log T)$ bound in the i.i.d. setting are to
 1. use the two-sided hybrid regularizer
 2. analyze it using the self-bounding technique
- Experiments show our algorithm indeed has best-of-both-world performance, while previous algorithms do not.

Poster #126