Target Tracking for Contextual Bandits: Application to Demand Side Management

Margaux Brégère

Joint work with Gilles Stoltz (CNRS Université Paris-Sud), Yannig Goude (EDF R&D) and Pierre Gaillard (Inria)

International Conference on Machine Learning

June, 12th 2019

Introduction

Motivation: maintain balance between production and demand

Apply contextual-bandit theory to demand side management by offering price incentives

K=3 tariffs: Low (L), Normal (N), High (H)

Modeling of the Electricity Consumption (general additive model)

 $Y_t = f_1(temperature) + f_2(position in the year) + f_3(tariff) + f_4(hour) + ... + noise$

 $\rightarrow \exists \phi$ (known transfer function), θ (unknown parameter) | $\mathbb{E}[\mathbf{Y}] = \phi(\mathbf{X})^{\mathsf{T}} \theta$

At each round t = 1, ...

- ▶ Observe a context $x_t \in X$
- ► Pick an allocation of price levels $p_t \in \mathcal{P} \subset \Delta_K = \{(p_1, ..., p_K) \in [0, 1]^K | \sum_k p_k = 1\}$
- Observe the consumption $Y_{t,p_t} = \phi(x_t, p_t)^T \theta + p_t^T \varepsilon_t$ with $\mathbb{V}[\varepsilon_t] = \Gamma \in \mathcal{M}_K(\mathbb{R})$ in [0, C]

At each round t = 1, ...

- Observe a context $x_t \in \mathcal{X}$ and a target c_t in [0, C]
- ▶ Pick $p_t \in \mathcal{P}$ and observe Y_{t,p_t}

► Suffer a loss $(Y_{t,p_t} - c_t)^2$ Aim. Minimize the pseudo-regret $R_T = \sum_{t=1}^T \ell_{t,p_t} - \sum_{t=1}^T \min_{p \in \mathcal{P}} \ell_{t,p}$

with
$$\ell_{t,p} = \mathbb{E}\left[\left(Y_{t,p} - c_t\right)^2 | \text{ past}\right] = \left(\phi(x_t, p)^T \theta - c_t\right)^2 + p^T \Gamma p$$

> Classical setting
$$R_T = \sum_{t=1}^T \max_{p \in \mathcal{P}} \phi(x_t, p)^T \theta - \sum_{t=1}^T \phi(x_t, p_t)^T \theta$$

 \triangleright Reach a bias-variance trade-off by estimating θ and Γ

Optimistic algorithm for tracking target with context

▶ For t = 1, ..., n,

 \triangleright Estimate Γ and get a confidence bound for $p_1, ... p_n$ well chosen

$$\begin{split} \widehat{\Gamma}_{n} &= \arg\min_{\widehat{\Gamma}} \sum_{s=1}^{n} \left(\left(Y_{t,p_{t}} - \left[\phi(x_{t},p_{t})^{T} \widehat{\theta}_{n} \right]_{C} \right)^{2} - p_{t}^{T} \widehat{\Gamma} p_{t} \right)^{2} \\ & \text{with } \widehat{\theta}_{n} = \arg\min_{\widehat{\theta}} \sum_{s=1}^{n} \left(Y_{s,p_{s}} - \phi(x_{s},p_{s})^{T} \widehat{\theta} \right)^{2} + \lambda \left\| \widehat{\theta} \right\|^{2} \end{split}$$

• For $t \ge n + 1$,

- \triangleright Re-estimate θ and get a confidence set as in Lin-UCB (Li et al. 2010)
- For each p, estimate loss and get a confidence bound

$$\widehat{\ell}_{t,p} = \left(\left[\boldsymbol{\varphi}(\boldsymbol{x}_{t}, \boldsymbol{p})^{\mathrm{T}} \widehat{\boldsymbol{\theta}}_{t-1} \right]_{\mathrm{C}} - \boldsymbol{c}_{t} \right)^{2} + \boldsymbol{p}^{\mathrm{T}} \widehat{\boldsymbol{\Gamma}}_{\mathbf{n}} \boldsymbol{p} \text{ and } \left\| \widehat{\ell}_{t,p} - \ell_{t,p} \right\| \leq \alpha_{t,p}$$

> Select price levels optimistically
$$\mathbf{p}_t \in \underset{\mathbf{p} \in \mathcal{P}}{\operatorname{arg min}} \{ \hat{\ell}_{t,p} - \alpha_{t,p} \}$$

Theorem. For proper choice of confidence level $\alpha_{t,p}$ and $n = \sigma(T^{2/3})$, with probability at least $1 - \delta$, $R_T \leq T^{2/3} \ln^2 (T/\delta) \sqrt{\ln(1/\delta)}$.

Experiments

Thank you and see you at the poster session! #122