GDPP Learning Diverse Generations using Determinantal Point Process

Mohamed Elfeki, Camille Couprie, Morgane Rivière and Mohamed Elhoseiny

* <u>https://github.com/M-Elfeki/GDPP</u>

What's wrong with Generative models?

What's wrong with Generative models?

Real Sample Fake Sample

What's wrong with Generative models?

Real Sample Fake Sample

Determinantal Point Process (DPP) $\mathcal{P}(S \subseteq Y) \propto \det(L_S)$ $\mathcal{P}(S \subseteq Y) \propto \det(\phi(S)^{\top}\phi(S))$

 ϕ is feature representation of subset S sampled from ground set Y

Determinantal Point Process (DPP) $\mathcal{P}(S \subseteq Y) \propto \det(L_S)$ $\mathcal{P}(S \subseteq Y) \propto \det(\phi(S)^{\top}\phi(S))$

 ϕ is feature representation of subset S sampled from ground set Y

L_S: DPP kernel, models the diversity of a mini-batch S

What is GDPP?

What GDPP?

What GDPP?

$$\mathcal{L}_{g}^{DPP} = \mathcal{L}_{m} + \mathcal{L}_{s} = \sum_{i} \|\lambda_{real}^{i} - \lambda_{fake}^{i}\|_{2} - \sum_{i} \hat{\lambda}_{real}^{i} \cos(v_{real}^{i}, v_{fake}^{i})$$

How GDPP?

How GDPP?

How GDPP?

Does it work? (Synthetic) Real Sample • Fake Sample

Does it work? (Real)

	DCGAN	Unrolled-GAN	VEE-GAN	Reg-GAN	WGAN	WGAN-GP	GDPP-GAN
Avg. Iter. Time (s)	0.0674	0.2467	0.1978	0.1357	0.1747	0.4331	0.0746

Fast Training Time

Fast Training Time

Fast Training Time

1. No extra trainable parameters (cost-free)

- 1. No extra trainable parameters (cost-free)
- 2. Unsupervised Setting (No labels)

- 1. No extra trainable parameters (cost-free)
- 2. Unsupervised Setting (No labels)
- 3. Stabilizes Adversarial Training

- 1. No extra trainable parameters (cost-free)
- 2. Unsupervised Setting (No labels)
- 3. Stabilizes Adversarial Training
- 4. Time and Data efficient

- 1. No extra trainable parameters (cost-free)
- 2. Unsupervised Setting (No labels)
- 3. Stabilizes Adversarial Training
- 4. Time and Data efficient
- 5. Architecture & Model Invariant (GAN & VAE)

- 1. No extra trainable parameters (cost-free)
- 2. Unsupervised Setting (No labels)
- 3. Stabilizes Adversarial Training
- 4. Time and Data efficient
- 5. Architecture & Model Invariant (GAN & VAE)

Yet, Consistently outperforms state-of-the-art

For many more, join us in 0.0186 Stackedel

Min. SWD

0.0163

0.0241

0.0115

0.0075

g Proportions Evaluation Results for 100 bins (NDB : JS

