Improved Dynamic Graph Learning through Fault-Tolerant Sparsification

Chun Jiang Zhu, Sabine Storandt, Kam-Yiu Lam, Song Han, Jinbo Bi
Motivations

• Consider the problem of solving certain graph regularized learning problems
 • For example, suppose vector β^* is a smooth signal over vertices in a graph G, and y is the corresponding observations

 $$
 \min_{\beta \in \mathbb{R}^n} \|y - \beta\|^2 + \lambda \beta^T L_G \beta.
 $$

 • Solve

• Solution $\hat{\beta} = (I + \lambda L_G)^{-1} y$ can be obtained in $\tilde{O}(m)$ time by an optimal SDD matrix solver
Motivations

• Solving systems in Laplacians matrices can be performed approximately more efficiently if a sparse approximation H to the Laplacian is maintained

$$\min_{\beta \in \mathbb{R}^n} \|y - \beta\|^2 + \lambda' \beta H \beta^T$$

$$\tilde{\beta} = (I + \lambda' L_H)^{-1}$$

which can be obtained in $\tilde{O}(n)$ time

• How about when the graph changes?
Motivations

• We introduce the notion of fault-tolerant sparsifiers, that is sparsifiers that stay sparsifiers even after the removal of vertices / edges

• Specifically, we
 • Prove that these sparsifiers exist

 • Show how to compute them efficiently in nearly linear time

• Improve upon previous work on dynamically maintaining sparsifiers in certain regimes
Fault-Tolerant Sparsifiers

Definition 1. For a graph $G(V, E)$, a positive integer f and parameter $\epsilon \in (0, 1)$, a re-weighted subgraph $H(V, E' \subseteq E)$ is an f-**VFT** (f-**EFT**) $(1 \pm \epsilon)$-**spectral sparsifier**, if for all vertex (edge) sets $F \subseteq V$ ($F \subseteq E$) of size $|F| \leq f$, $(1 - \epsilon)L_{G-F} \leq L_{H-F} \leq (1 + \epsilon)L_{G-F}$ holds.

Definition 3. For a graph $G(V, E)$, a positive integer f and parameter $\epsilon \in (0, 1)$, a re-weighted subgraph $H(V, E' \subseteq E)$ is an f-**VFT** (f-**EFT**) $(1 \pm \epsilon)$-**cut sparsifier** if, for all vertex (edge) sets $F \subseteq V$ ($F \subseteq E$) of size $|F| \leq f$, $(1 - \epsilon)L_{G-F} \preceq \{0,1\} L_{H-F} \preceq \{0,1\} (1 + \epsilon)L_{G-F}$ holds.
Example

Figure 1: 1-\textit{FT} cut sparsifiers of G: H_1 and H_2. (a) G with 36 edges and edge weight 1. (b) H_1 with 18 edges and edge weight 2. (c) H_2 with 12 edges and edge weight 3. Without loss of generality consider that v is faulty. The \textit{Min-Cut} of $G - \{v\}$ is 5, while the \textit{Min-Cut} of $H_1 - \{v\}$ and $H_2 - \{v\}$ are 4 and 3, respectively. Then H_1 and H_2 are 1-\textit{FT} (1 ± 0.2)-cut sparsifier and (1 ± 0.4)-cut sparsifier of G, respectively.
Main Theorems

Theorem 1. For an n-vertex m-edge graph G, a positive integer f, a parameter $\epsilon \in (0, 1)$ and $\rho > 1$, an f-VFT (f-EFT) $(1 \pm \epsilon)$-spectral sparsifier for G of expected size $O(fn \log \rho + n \log^2 n \log^3 \rho/\epsilon^2 + m/\rho)$ w.h.p. can be constructed.

Theorem 7. For an n-vertex m-edge graph G, a positive integer f, a parameter $\epsilon \in (0, 1)$, $\rho > 1$ a constant $C_\epsilon > 0$ and a parameter $c > 1$, Algorithm 4 constructs an f-VFT (f-EFT) $(1 \pm \epsilon)$-cut sparsifier for G of expected size $O(fn \log \rho + n \log^2 n \log^3 \rho/\epsilon^2 + m/\rho)$, with probability at least $1 - n^{-c}$.
Main Techniques for FT spectral sparsifiers

- Use FT spanners and random sampling for constructing FT sparsifiers

- Inspired by the sparsification algorithm (Koutis & Xu, 2016)

- (1) First constructs an $(f + t)$-FT spanner for the input graph G by any FT graph spanner algorithms

- (2) Then uniformly samples each non-spanner edge with a fixed probability $1/4$, and multiplies the edge weight of each sampled edge by 4, to preserve the edge’s expectation

Main Techniques for FT spectral sparsifiers

• The $(f + t)$-FT spanner guarantees that even in the presence of at most f faults, each edge not in the spanner has t edge-disjoint paths between its endpoints in the spanner, showing its small effective resistance in G

• By the matrix concentration bounds (Harvey, 2012), we can prove that the resulting subgraph is a sparse FT spectral sparsifier

Figure 2: A faulty vertex set $F = \{w_1, \cdots, w_f\}$ of size \hat{f} can invalidate at most \hat{f} paths out of f vertex-disjoint paths between endpoints u and v of an edge $e(u,v)$. Here $f = 5$ and $\hat{f} = 3$.
Using FT sparsifiers in subsequent learning tasks

• At a time point $t > 0$,
 • For each vertex v (edge e) insertion into G_{t-1}, if v (e) is in H, add v and its associated edges in H (e itself) to H_{t-1}
 • For each vertex v (edge e) deletion from G_{t-1}, if v (e) is in H_{t-1}, remove v and its associated edges (e) from H_{t-1}

• These only incur a **constant** computational cost per edge update

• More importantly, the resulting subgraph is guaranteed to be a spectral sparsifier of the graph G_t at the time point t, under the assumption that G_t differs from G_0 by a bounded amount

• We give stability bounds to quantify the impact of the FT sparsification on the accuracy of subsequent graph learning tasks
FT Cut Sparsifiers

- There exists graph-based learning based on graph cuts and using cut-based algorithms, instead of spectral methods
 - *Min-Cut* for SSL (Blum & Chawla, 2001), *Max-Cut* for SSL (Wang et al., 2013), *Sparsest-Cut* for hierarchical learning (Moses & Vaggos, 2017), and *Max-Flow* for SSL (Rustamov & Klosowski, 2018)

- Construction:
 - The same framework as that for *FT* spectral sparsifiers
 - Define and use a variant of maximum spanning trees, called *FT α-MST*, to preserve edge connectivities

Experiments

• Dataset: Facebook social network data with 4309 vertices and 88234 edges from the SNAP

• Method: Compared our algorithm FTSPA with a baseline SPA, which constructs a spectral sparsifier from scratch at every time point, and the exact method EXACT

• The speedup is over 10^5, while the accuracies are not significantly affected by the FT sparsification!

<table>
<thead>
<tr>
<th>Methods</th>
<th>Update Time</th>
<th>Speedup</th>
<th># Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA</td>
<td>34.2 s</td>
<td>1</td>
<td>12978 ± 30</td>
</tr>
<tr>
<td>FTSPA</td>
<td>0.3 ms</td>
<td>$>10^5$</td>
<td>16502 ± 41</td>
</tr>
</tbody>
</table>

Table 1: Update time and # edges of SPA and FTSPA
Accuracy of Laplacian-regularized estimation (\(\sigma\) is the SD of Gaussian noises added to y)

(a) Estimation, \(\sigma = 0.1\)
(b) Estimation, \(\sigma = 0.01\)