Automatic Classifiers as Scientific Instruments: One Step Further Away from Ground-Truth

Jacob Whitehill and Anand Ramakrishnan
Worcester Polytechnic Institute (WPI), Massachusetts, USA
Machine learning to advance basic science

• Machine perception can advance basic science in:
 • Psychology
 • Education
 • Medicine

• ...by providing automatic classifiers as new scientific instruments, e.g.:
 • Automatic stress detectors from wrist monitors instead of questionnaires.
 • Facial action unit detectors from video instead of electromyography.
 • Student engagement detectors from video instead of observational protocols.
Suppose a researcher wishes to measure the relationship between two constructs U and V, e.g.:

$U =$ stress

$V =$ academic performance.

Standard methodology:

- Use a **standard measurement tool** (e.g., survey, observational protocol) to estimate the values of U and V from a sample of n participants.
- This produces two vectors $u, v \in \mathbb{R}^n$, which we can assume w.l.o.g. have 0-mean and 1-length.
- Estimate the correlation between U and V as:

$$ r = \rho(u, v) = u^\top v = \cos \angle(u, v) $$

Only the angle between the two vectors determines their correlation.
Correlation study

- But what if the researcher instead uses an automatic stress detector d whose correlation with ground-truth measurements is q (known from prior validation)?

- Instead of u, the researcher obtains a vector \hat{u}.

- What kind of spurious deductions about the correlation between U and V could result?
Trivariate correlation

- Suppose u and v are ground-truth values of U and V.
- The correlation between u and v is $r = \cos(105^\circ) = -0.259$.

Trivariate correlation

- Using a detector d, the researcher might obtain \hat{u}, whose correlation with u is q.

- The correlation between \hat{u} and v is $\cos(135^\circ) = -.707$ — much larger than, but same sign as, the ground-truth correlation.
Trivariate correlation

- But they might also obtain vector \hat{u}', whose correlation with u is also q.

- The correlation between \hat{u}' and v is $\cos(75^\circ) = +.259$ — this is the **opposite sign** as the ground-truth correlation.

 We call this a **false correlation**.
Main results

1. The set of all vectors whose correlation with u is q, is an $(n-3)$-sphere $\mathcal{T}^n \in \mathbb{R}^n$.

2. If the correlation between u and v is r, then the expected sample correlation between u and v, where v is drawn uniformly at random from \mathcal{T}, is qr.

3. We derive a formula $h(n, q, r)$ for the probability of a false correlation.

4. We show that h is monotonically decreasing in q and n.

Main results

1. The set of all vectors whose correlation with \(\mathbf{u} \) is \(q \), is an \((n-3)\)-sphere \(\mathcal{T}^n \subset \mathbb{R}^n \).

2. If the correlation between \(\mathbf{u} \) and \(\mathbf{v} \) is \(r \), then the expected sample correlation between \(\hat{\mathbf{u}} \) and \(\mathbf{v} \), where \(\hat{\mathbf{u}} \) is drawn uniformly at random from \(\mathcal{T}^n \), is \(qr \).
Main results

1. The set of all vectors whose correlation with \(\mathbf{u} \) is \(q \), is an \((n-3)\)-sphere \(\mathcal{T}^n \in \mathbb{R}^n \).

2. If the correlation between \(\mathbf{u} \) and \(\mathbf{v} \) is \(r \), then the expected sample correlation between \(\hat{\mathbf{u}} \) and \(\mathbf{v} \), where \(\hat{\mathbf{u}} \) is drawn uniformly at random from \(\mathcal{T}^n \), is \(qr \).

3. We derive a formula \(h(n,q,r) \) for the probability of a false correlation.
Main results

1. The set of all vectors whose correlation with \(u \) is \(q \), is an \((n-3)\)-sphere \(\mathcal{T}^n \in \mathbb{R}^n \).

2. If the correlation between \(u \) and \(v \) is \(r \), then the expected sample correlation between \(\hat{u} \) and \(v \), where \(\hat{u} \) is drawn uniformly at random from \(\mathcal{T}^n \), is \(qr \).

3. We derive a formula \(h(n,q,r) \) for the probability of a false correlation.

4. We show that \(h \) is monotonically decreasing in \(q \) and \(n \). But it can still be non-negligible for values of \(n, q \) used in recent affective computing studies — despite a small p-value.
Case study: Student engagement vs. cognitive task performance

- Whitehill et al. 2014 measured student engagement using (1) observational protocol and (2) automatic engagement detector d ($q=0.50$).
- Using hand-coded labels, $\text{corr}(U, V)$ was estimated as $r=0.37$.
- Given n, q, r, what is probability of false correlation from d?
Case study: Student engagement vs. cognitive task performance

\[U: \text{Engagement} \]
\[V: \text{Cognitive task performance} \]

- Whitehill et al. 2014 measured student engagement using (1) observational protocol and (2) automatic engagement detector \(d \) \((q=0.50)\).
- Using hand-coded labels, \(\text{corr}(U, V) \) was estimated as \(r=0.37 \).
- Given \(n, q, r \), what is probability of false correlation from \(d \)?

Probability of "false negative" correlation \((q = 0.5, r = 0.37)\)

Probability vs. \(n \):
- Probability decreases as \(n \) increases.