On The Power of Curriculum Learning in Deep Neural Networks

Guy Hacohen1,2 and Daphna Weinshall1
1- School of Computer Science and Engineering, The Hebrew University of Jerusalem.
2- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem.

International Conference on Machine Learning (ICML) 2019

Long beach
Background – curriculum learning

- Teaching is a hard problem.
- Curriculum introduces structure: simple concepts are learned before harder ones.
- Complex concepts are usually based on a composition of easier concepts.
- Wildly used in human training.
- Beneficial in several machine learning paradigms.
Curriculum in deep learning

- Deep learning: teach a neural network classification task.
 - Teacher: Learning algorithm (SGD)
 - Student: Neural network

- Traditionally, data is presented to the network at random.
- Idea: present data according to some curriculum.
Scoring functions

- Classification task on visual data.
- Determine the hardness of each image.

Which image is harder to classify?
Scoring functions

- Classification task on visual data.
- Determine the hardness of each image.

Which image is harder to classify?
Scoring functions

- Classification task on visual data.
- Determine the hardness of each image.

Which image is harder to classify?
Pacing functions

- Pacing – when to present new concepts?

Too slow: boredom

Too fast: overwhelmed
Curriculum by transfer

- Transfer learning from Inception trained on ImageNet.
- Score by the confidence of some linear classifier on the feature space.
Results and analysis

- Curriculum speeds up learning and leads to better solutions.
 - Accuracy is higher all along the learning curve.

- Theoretical and empirical analysis:
 - How curriculum learning affects the objective function of neural networks?
For more details, come visit my poster!

Poster number: 128