Improving Model Selection
by Employing the Test Data

Max Westphal, Werner Brannath

University of Bremen, Germany
Institute for Statistics
Research Training Group π^3

mwestphal@uni-bremen.de
https://github.com/maxwestphal/

ICML 2019, Long Beach
June 11, 2018
Train-Validation-Test Split

Train

\[X \xrightarrow{f_1} \hat{Y} \]
\[X \xrightarrow{f_2} \hat{Y} \]
\[X \xrightarrow{f_3} \hat{Y} \]
\[X \xrightarrow{f_4} \hat{Y} \]
\[\vdots \]
\[X \xrightarrow{f_M} \hat{Y} \]

Validation

\[\hat{\vartheta}_V \]

Learning

Max Westphal

Improving Model Selection
Train-Validation-Test Split

Training

Validation

Max Westphal
Improving Model Selection

Learning

\[\hat{Y} \]

\[\hat{f}_1 \]

\[\hat{f}_2 \]

\[\hat{f}_3 \]

\[\hat{f}_4 \]

\[\hat{f}_M \]

\[A_1 \]

\[A_2 \]

\[A_3 \]

\[A_4 \]

\[A_M \]

\[\hat{\varphi}_1 \]

\[\hat{\varphi}_2 \]

\[\hat{\varphi}_3 \]

\[\hat{\varphi}_4 \]

\[\hat{\varphi}_M \]
Train-Validation-Test Split

Training

Validation

\[\text{argmax} \]

Learning

Max Westphal

Improving Model Selection

Max Westphal
Particularly in regulated environments, we need a reliable performance assessment before implementing a prediction model in practice.

Example: disease diagnosis / prognosis based on clinical data

Usually recommended strategy:

Evaluate a single final model on independent test data.
Train-Validation-Test Split

Max Westphal

Improving Model Selection

Evaluation

\[
\begin{align*}
X \xrightarrow{f_1} \hat{Y} \\
X \xrightarrow{f_2} \hat{Y} \\
X \xrightarrow{f_3} \hat{Y} \\
X \xrightarrow{f_4} \hat{Y} \\
\vdots \\
\vdots \\
X \xrightarrow{f_M} \hat{Y}
\end{align*}
\]

\[
\delta_4^E + \text{CI}_4 + \varphi_4
\]
Particularly in regulated environments, we need a reliable performance assessment before implementing a prediction model in practice.

Example: disease diagnosis / prognosis based on clinical data

Usually recommended strategy:

Evaluate a single final model on independent test data!

Easy-to-use strategy, allowing for a reliable performance assessment and simple inference.

However, we have no way to fix a bad model selection after having observed the test data.
Simultaneous Model Evaluation

Training

Validation

Learning

Max Westphal

Improving Model Selection
Simultaneous Model Evaluation

Test

Evaluation

Max Westphal

Improving Model Selection
Simulation study

Learning
- **Idea:** simulate data and train, select and evaluate binary classifiers in different scenarios
 - 24 artificial classification tasks
 - 72,000 replications of complete ML pipeline
 - 28,800,000 distinct models (EN, CART, SVM, XGB)

Evaluation
- **Goal:** comparison of different evaluation strategies
 - **default:** best validation model only
 - **within 1 SE:** all models within 1 SE of best validation model
Simulation Results

\[n_{\text{learn}} = 400 \]

\[n_{\text{learn}} = 800 \]

Performance gain vs. \(n_{\text{test}} \) for different values of \(n_{\text{learn}} \). The box plots show the distribution of performance gain for each \(n_{\text{test}} \) value.
Simulation Results

False & true positive test decisions

n_{test} = 200
n_{test} = 400
n_{test} = 800

FPR TPR

Selection rule: default, within1SE
When in doubt, delay the final model choice to the test data.

- Improvements in model performance and probability to correctly identify a good model in all investigated scenarios.
- Adjustment for multiple comparisons via approximate parametric procedure taking into account model similarity (maxT-approach).

Questions & feedback welcomed!
- mwestphal@uni-bremen.de
- https://github.com/maxwestphal/

POSTER #123 (Pacific Ballroom)