Metric-Optimized Example Weights

Sen Zhao, Mahdi Milani Fard, Harikrishna Narasimhan, Maya Gupta

Google Research
Motivation: Building a Ranking Model

Goal: positive precision@3 globally, and not negative in any specific locales.

Training Data: Jan - Oct

Testing Data: Nov - Dec

Train with pairwise hinge loss.
Motivation: Building a Ranking Model

Attempt 1: Train a ranking model on global data.

- Good global precision@3, but negative in Japan and Brazil.
Motivation: Building a Ranking Model

Attempt 1: Train a ranking model on global data.

- Good global precision@3, but negative in Japan and Brazil.

Attempt 2: Upweight Japan and Brazil training data.

- Good metric in Japan and Brazil, but negative in UK and India.
Motivation: Building a Ranking Model

Attempt 1: Train a ranking model on global data.
 - Good global precision@3, but negative in Japan and Brazil.

Attempt 2: Upweight Japan and Brazil training data.
 - Good metric in Japan and Brazil, but negative in UK and India.

Attempt 3: Upweight UK and India training data.
 - US turns negative....
Motivation: Building a Ranking Model

Attempt 1: Train a ranking model on global data.
 ● Good global precision@3, but negative in Japan and Brazil.

Attempt 2: Upweight Japan and Brazil training data.
 ● Good metric in Japan and Brazil, but negative in UK and India.

Attempt 3: Upweight UK and India training data.
 ● US turns negative....

Attempt 4: ...
A Practitioner’s Challenge

Training

Training Distribution (Jan - Oct)
Training Loss (Pairwise Hinge)

Evaluation

Testing Distribution (Holiday Season)
Testing Metric (Precision@3)
Metric-Optimized Example Weights (MOEW)

MOEW learns the optimal weighting on training examples to maximize the testing metric.

- Suitable for any loss and any (black-box, non-differentiable) metrics.
- Accompanied by theoretical analysis (generalization bounds etc.).
Formulation

The main model θ is an ERM problem with weighted loss:

$$
\hat{\theta}(\alpha) = \arg\min_{\theta} \sum_{j \in \mathcal{T}} w(x_j, y_j; \alpha) L(h(x_j; \theta), y_j)
$$

The weighting model ω has one parameter α that is learned to maximize validation metric:

$$
\hat{\alpha} = \arg\max_{\alpha} \hat{M}(x, y; \hat{\theta}(\alpha))
$$

Iteratively optimize...
A Sneak Peek of MOEW
Poster
Tonight 06:30 -- 09:00 PM @ Pacific Ballroom #122