Actor-Attention-Critic for Multi-Agent Reinforcement Learning

Shariq Iqbal and Fei Sha
Outline

- Establish a baseline approach to MARL
- Demonstrate how recent approaches improve on said baseline through sharing information between agents during training
- Present our attention-based approach for information sharing
- Demonstrate our approach’s improved effectiveness in terms of scalability and overall performance
Baseline Approach to MARL

Learning with single-agent RL technique (actor-critic) for each agent independently

Each agent only considers its local information
Both the actor during execution, and the actor and critic during training
Centralizing Training
Addressing the downsides of the independent MARL approach

- Centralizing training = each agent’s critic takes other agents’ actions and observations into account when predicting their own returns
- Policies remain decentralized
- **Pros:**
 - Gives more information to each agent, improving performance
- **Cons:**
 - Now we need communication during training

But, How to Share?

- Existing approaches [1,2] concatenate all information into one long vector
 - Can get large as many agents are added
 - Not all information is relevant

Actor-Attention-Critic

Sharing information between agents using an attention mechanism

- Agents “attend” to information that is important for predicting their returns
- Information about other agents is encoded into a fixed size vector
Attention Mechanism in Detail
Sharing information between agents using an attention mechanism

- Agents exchange information using a query-key system
- Ultimately receive aggregated information from other agents that is most relevant to predicting their own returns
Environments

- **Cooperative Treasure Collection**
 - Agents with different roles cooperate to collect colored “treasure” around the map
 - **Challenge**: rewards are shared, and agents must perform multi-agent credit assignment

- **Rover-Tower**
 - Blind “rovers” and stationary “towers” randomly paired and must cooperatively reach goal through communication
 - **Challenge**: rewards are independent per pair, so agents must learn to select relevant information

- Both tasks are easily scalable and require coordination between heterogeneous agent types
Our method outperforms baseline methods on two cooperative tasks.
Scalability

- Compared to the next best performing baseline, our method scales well as agents are added.
Thank you!

For more details please come to our poster:
06:30 -- 09:00 PM Pacific Ballroom