Iterative Linearized Control: Stable Algorithms and Complexity Guarantees

Vincent Roulet, Dmitriy Drusvyatskiy, Siddhartha Srinivasa, Zaid Harchaoui

ICML 2019
Problem

Nonlinear control

$$\min_{u_0,\ldots,u_{T-1}} \sum_{t=0}^{T} \left(h_t(x_t) + g_t(u_t) \right)$$

s.t. \(x_{t+1} = \phi_t(x_t, u_t) \)

\(x_0 = \hat{x}_0 \)

\(\rightarrow \) Iterative linearization (ILQR) around current \(x_t, u_t \)

$$\min_{v_0,\ldots,v_{T-1}} \sum_{t=0}^{T} \left(y_t^\top H_t y_t + v_t^\top G_t v_t \right)$$

s.t. \(y_{t+1} = \Phi_{t,x} y_t + \Phi_{t,u} v_t \)

\(y_0 = 0 \)

\(\rightarrow \) Next iterate \(u_t^+ = u_t + v_t^* \)

Questions

1. Does ILQR converge? Can it be accelerated?
2. How do we characterize complexities for nonlinear control?
Contributions

Regularized and Accelerated ILQR

1. ILQR is Gauss-Newton
 → Regularized ILQR gets convergence to a stationary point

2. Potential acceleration by extrapolation steps
 → Accelerated ILQR akin to Catalyst acceleration
Contributions

Oracles complexities

1. Oracles are solved by dynamic programming
 → Gradient and Gauss-Newton have both cost in $\mathcal{O}(T)$
2. Automatic-differentiation software libraries available
 → Use auto.-diff. as oracle for direct implementation

Code summary available at https://github.com/vroulet/ilqc

dynamics, cost = define_ctrl_pb()

ctrl = rand(dim_ctrl)

auto_diff_oracle = define_auto_diff_oracle(ctrl, dynamics)
dual_sol = solve_dual_step(ctrl, cost, auto_diff_oracle)

next_ctrl = get_primal(dual_sol, auto_diff_oracle, cost)

Come see Poster #39 in Pacific Ballroom!