Bellman GAN:

Distributional Multivariate Policy Evaluation and Exploration

Dror Freirich, Tzahi Shimkin, Ron Meir, Aviv Tamar

Viterbi Faculty of Electrical Engineering
Technion

ICML 2019
Outline

- Distributional RL
- GANs
- Multivariate rewards
- Exploration
Objective

Learning value distribution, rather than expectation

\[Z^\pi(s, a) \overset{D}{=} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \quad ; \quad s_0 = s, a_0 = a \]

Z obeys distributional Bellman equation – Fixed Point!

\[Z^\pi(s, a) \overset{D}{=} T^\pi Z^\pi(s, a) \]

Distributional Bellman operator

\[T^\pi Z^\pi(s, a) \overset{\Delta}{=} R(s, a) + \gamma Z^\pi(s', a') \]
Bellman GAN

Approximate $Z^\pi(s, a)$

(s, a)

$z \sim p_z$

Generator

Discriminator

Real $Z^\pi(s, a)$
Bellman GAN

Mapping Distributional Bellman Eqn. to WGAN
High Dimensional Distributions

- GANs learn distributions of high-dim data

Main insight Framework applicable to vector rewards \(r(s, a) \in \mathbb{R}^d \)

Scalable DiRL algorithm for Multi-Objective RL
Multi-Reward Policy Evaluation

- Tabular state-space, 4 actions, Random policy.
- 8 reward types, 2 in each room.
- Trained BellGAN, sampled Generator at different locations.
Multi-Reward Policy Evaluation

- Tabular state-space, 4 actions, Random policy.
- 8 reward types, 2 in each room.
- Trained BellGAN, sampled Generator at different locations.
Model Learning

Multivariate Bellman equation

\[Z^\pi(s, a) \xlongequal{D} T^\pi Z^\pi(s, a) \triangleq \tilde{r}(s, a, s') + \tilde{\Gamma} Z^\pi(s', a') \]

Special case: Model Learning

\[\tilde{r}(s, a, s') = \begin{pmatrix} r(s, a, s') \\ s' \end{pmatrix} \]

\[\tilde{\Gamma} = \begin{pmatrix} \gamma I & 0 \\ 0 & 0 \end{pmatrix} \]

Advantages

Framework for learning both value and transition model, and the dependencies between them.

Application

Exploration – change in Wasserstein distance as reward bonus for curiosity.
Continuous Control Experiments

$LQR(noisy - cost)$

Cum. Reward vs. Iteration

$CartPoleSwingup$

(sparse)

Cum. Reward vs. Iteration

$SwimmerGather$

Cum. Reward vs. Iteration
Epilogue

- Equivalence - Distributional Bellman Eqn and GANs
- GAN-based algorithm for DiRL
 - high-dimensional, multivariate rewards
 - Unify learning of return and next state distributions
- Novel exploration method based on DiRL

- Paves the way for a distributional approach to:
 - Multi-objective RL
 - Policy optimization

Thank You!

References

- Cédrich Villani, Optimal transport old and new, 2008

- Brock et al, Large scale GAN training for high fidelity natural image synthesis, September 2018

Freirich, Shimkin, Meir, T., Distributional multivariate policy evaluation and exploration with the Bellman GAN, ICML 2019
DiRL Driven Exploration

Bellman GAN objective

\[\mathcal{L}_\pi(G, D) \triangleq \mathbb{E}_{z \sim p_z, a_{t+1} \sim \pi(\cdot|s_{t+1})} \Lambda(G_\theta, D_\omega) \]

Intrinsic reward function

\[r^i(s_t, a_t, r_t, s_{t+1}) \triangleq \left\| \mathbb{E}_{z \sim p_z, a_{t+1} \sim \pi(\cdot|s_{t+1})} \nabla_\theta \Lambda(G_\theta, D_\omega) \right\| \]

Approx. contribution to learning

Combined reward function

\[\hat{r}(s_t, a_t, s_{t+1}) = r(s_t, a_t, s_{t+1}) + \eta r^i(s_t, a_t, r_t, s_{t+1}) \]

Apply any RL algorithm

Exploitation \quad Exploration