SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

Marvin Zhang*, Sharad Vikram*, Laura Smith, Pieter Abbeel, Matthew J Johnson, Sergey Levine

UC Berkeley, UC San Diego, Google

Model-free RL: 4 hours for image-based robotic task, 2 hours for block stacking from states

https://sites.google.com/view/sac-and-applications

Model-free RL: 20 hours for image-based robotic task, 2 hours for block stacking from states

Model-based RL from images: relies on accurate forward prediction, which is difficult

Model-free RL: 20 hours for image-based robotic task, 2 hours for block stacking from states

Model-based RL from images: relies on accurate forward prediction, which is difficult

Key idea: structured representation learning to enable accurate modeling with simple models; model-based method that does use forward prediction

Levine and Abbeel, "Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics". NIPS 2014. Levine*, Finn*, Darrell, and Abbeel, "End-to-End Training of Deep Visuomotor Policies". JMLR 2016. Chebotar*, Hausman*, Zhang*, Sukhatme, Schaal, and Levine, "Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning". ICML 2017.

LQR-FLM fits local models for policy improvement, not forward prediction

Levine and Abbeel, "Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics". NIPS 2014. Levine*, Finn*, Darrell, and Abbeel, "End-to-End Training of Deep Visuomotor Policies". JMLR 2016. Chebotar*, Hausman*, Zhang*, Sukhatme, Schaal, and Levine, "Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning". ICML 2017.

LQR-FLM fits local models for policy improvement, not forward prediction

LQR-FLM has worked on complex robotic systems from states

Levine and Abbeel, "Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics". NIPS 2014. Levine*, Finn*, Darrell, and Abbeel, "End-to-End Training of Deep Visuomotor Policies". JMLR 2016. Chebotar*, Hausman*, Zhang*, Sukhatme, Schaal, and Levine, "Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning". ICML 2017.

LQR-FLM fits linear dynamics and quadratic cost models for policy improvement:

$$\hat{p}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) = \mathcal{N}\left(\mathbf{F}\begin{bmatrix}\mathbf{s}_t\\\mathbf{a}_t\end{bmatrix}, \Sigma\right) \hat{C}(\mathbf{s}_t, \mathbf{a}_t) = \mathbf{s}_t^{\top} \mathbf{R}_t \mathbf{s}_t + \mathbf{a}_t^{\top} \mathbf{U}_t \mathbf{a}_t$$

LQR-FLM fits linear dynamics and quadratic cost models for policy improvement:

$$\hat{p}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) = \mathcal{N}\left(\mathbf{F}\begin{bmatrix}\mathbf{s}_t\\\mathbf{a}_t\end{bmatrix}, \Sigma\right) \quad \hat{C}(\mathbf{s}_t, \mathbf{a}_t) = \mathbf{s}_t^{\top} \mathbf{R}_t \mathbf{s}_t + \mathbf{a}_t^{\top} \mathbf{U}_t \mathbf{a}_t$$

This works well, even for complex systems, if the state is relatively simple, but this doesn't work if the state is complex, such as images

Real robot results

Our method is more efficient than both prior model-free and model-based methods

Real robot results

Our method is more efficient than both prior model-free and model-based methods

Block stacking: we can *transfer a representation and model* to multiple initial arm positions

Real robot results

Our method is more efficient than both prior model-free and model-based methods

Mug pushing: We can solve this task from *sparse reward* using human key presses

Thank you

Poster #34

Paper: https://arxiv.org/abs/1808.09105

Website: https://sites.google.com/view/icml19solar

Blog post: https://bair.berkeley.edu/blog/2019/05/20/solar

Code: https://github.com/sharadmv/parasol

