

Thirty-sixth International Conference on Machine Learning

Differentiable Linearized ADMM

Xingyu Xie^{*, 1}

Jianlong Wu^{*, 1}

Zhisheng Zhong¹

Zhouchen $Lin^{\boxtimes, 1}$

¹ Key Lab. of Machine Perception, School of EECS, Peking University ² B-DAT and CICAEET, School of Automation, Nanjing University of Information Science and Technology

Background

- Optimization plays a very important role in learning
 - Most machine learning problems are, in the end, optimization problems
 - SVM
 - K-Means
 - ...
 - Deep Learning

$$\min_{x} f(x, data), \qquad s.t. \ x \in \Theta$$

- --- personal opinions: In general, what the computers can do is nothing more than "computation". Thus, to assign them the ability to "learn", it is often desirable to convert a "learning" problem into some kind of computational problem.
- Question: Conversely, can optimization benefit from learning ?

 A traditional optimization algorithm is indeed an ultra-deep network with fixed parameters

- Learning-based optimization: Introduce learnable parameters and "reduce" the network depth, so as to improve computational efficiency
 - Gregor K, Lecun Y. Learning fast approximations of sparse coding. ICML 2010.
 - P. Sprechmann, A. M. Bronstein, and G. Sapiro Learning, Efficient Sparse and Low Rank Models, TPAMI 2015
 - Yan Yang, Jian Sun, Huibin Li, Zongben Xu. ADMM-Net: A deep learning approach for compressive sensing MRI, NeurIPS 2016.
 - Brandon Amos, J. Zico Kolter. OptNet: optimization method as a layer in neural network. ICML 2017.

- Limits of existing work
 - In a theoretical point of view, it is unclear why learning can

improve computational efficiency, as theoretical convergence

analysis is extremely rare

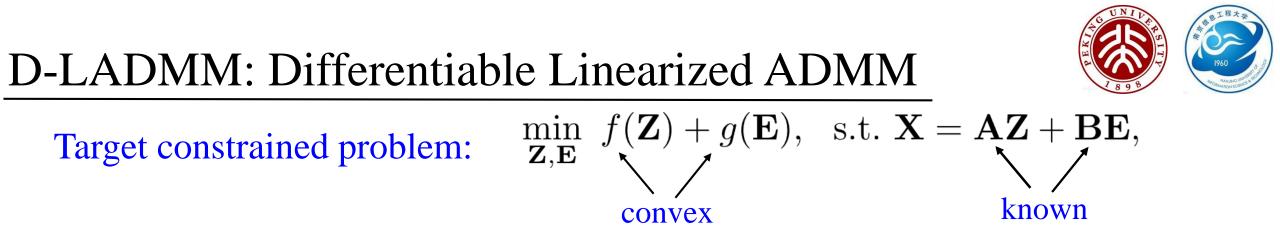
• X. Chen, J. Liu, Z. Wang, W. Yin, Theoretical linear

convergence of unfolded ISTA and its practical weights and

thresholds, NeurIPS, 2018.

minimize $\frac{1}{2} \|b - Ax\|_2^2 + \lambda \|x\|_1$

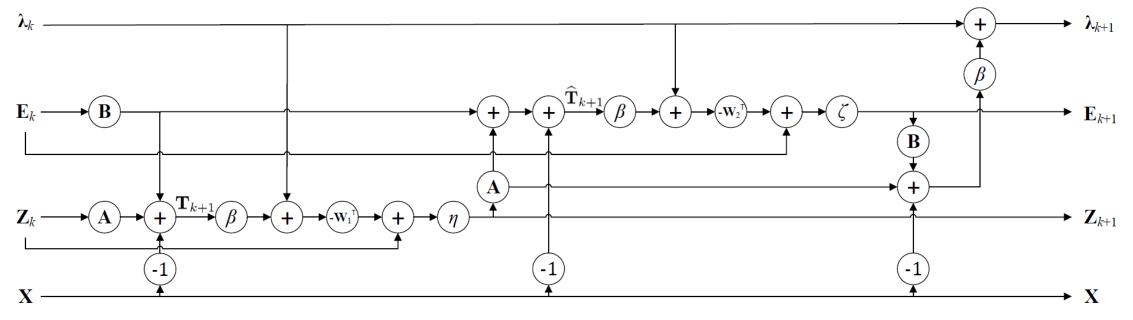
specific to unconstrained problems



LADMM (Lin et al, NeurIPS 2011):

D-LADMM:

D-LADMM (Con't)

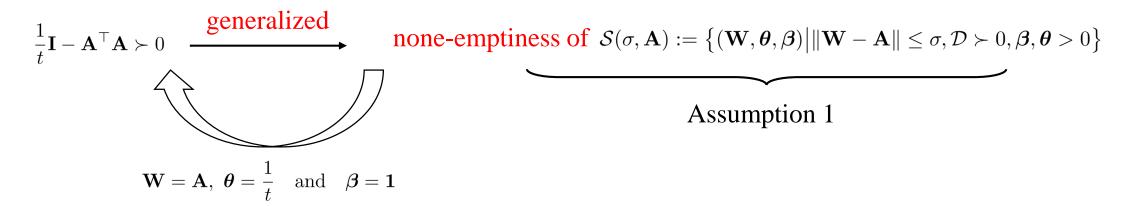


Questions:

Q1: Can D-LADMM guarantee to solve correctly the optimization problem?Q2: What are the benefits of D-LADMM?Q3: How to train the model of D-LADMM?

assumption required by LADMM:

assumption required by D-LADMM:



Theoretical Result I

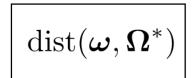
Q1: Can D-LADMM guarantee to solve correctly the optimization problem? A1: Yes!

$$egin{array}{l} oldsymbol{\omega}_k := (\mathbf{Z}_k, \mathbf{E}_k, -oldsymbol{\lambda}_k) \end{array}$$

D-LADMM's k-th layer output

 $oldsymbol{\Omega}^*$

solution set of original problem



distance to the solution set

Theorem 1 and Theorem 2 [Convergence and Monotonicity] (informal).

$$\underbrace{\operatorname{dist}(\boldsymbol{\omega}_{k+1},\boldsymbol{\Omega}^*) \geq \operatorname{dist}(\boldsymbol{\omega}_{k+1},\boldsymbol{\Omega}^*) \to 0}_{\boldsymbol{\omega}_k \to \boldsymbol{\omega}^* \in \boldsymbol{\Omega}^*}, \text{ as } k \to \infty.$$

linear convergence

Q2: What are the benefits of D-LADMM?A2: Converge faster!<u>Theorem 3 [Convergence Rate] (informal).</u>D-LADMM > LADMMIf the original problem satisfies *Error Bound Condition (condition on* A and B), then

dist $(\boldsymbol{\omega}_{k+1}, \boldsymbol{\Omega}^*) < \gamma$ dist $(\boldsymbol{\omega}_k, \boldsymbol{\Omega}^*)$, where $0 < \gamma < 1$.

General case (no EBC):

<u>Lemma 4.4</u> [Faster Convergence] (informal). Define operators: $\omega_{k+1} := \mathcal{T}_{\Theta_k}(\omega_k)$ for D-LADMM; $\omega_{k+1} := \mathcal{T}(\omega_k)$ for LADMM. For any ω ,

$$\operatorname{dist}(\mathcal{T}_{\Theta}(\boldsymbol{\omega}), \boldsymbol{\Omega}^*) \leq \operatorname{dist}(\mathcal{T}(\boldsymbol{\omega}), \boldsymbol{\Omega}^*).$$

Training Approaches

Q3: How to train the model of D-LADMM?

Unsupervised way: minimizing duality gap

$$\min_{\Theta} f(\mathbf{Z}_K) + g(\mathbf{E}_K) - d^*(\boldsymbol{\lambda}_K),$$

where $d^*(\lambda_K) = \inf_{\mathbf{Z}, \mathbf{E}} f(\mathbf{Z}) + g(\mathbf{E}) + \langle \lambda_K, \mathbf{A}\mathbf{Z} + \mathbf{B}\mathbf{E} - \mathbf{X} \rangle$ is the dual function.

Global optimum is attained whenever the objective (duality gap) reaches zero!

Supervised way: minimizing square loss

$$\min_{\Theta} \|\mathbf{Z}_K - \mathbf{Z}^*\|_F^2 + \|\mathbf{E}_K - \mathbf{E}^*\|_F^2.$$

ground-truth Z^* and E^* are provided along with the training samples

Experiments

Target optimization problem $\min_{\mathbf{Z},\mathbf{E}} \lambda \|\mathbf{Z}\|_1 + \|\mathbf{E}\|_1, \quad s.t. \ \mathbf{X} = \mathbf{A}\mathbf{Z} + \mathbf{E}.$

Table 1. PSNR comparison on 12 images with noise rate 10%.

PSNR	Images											
	Barb	Boat	France	Frog	Goldhill	Lena	Library	Mandrill	Mountain	Peppers	Washsat	Zelda
Baseline	15.4	15.3	14.5	15.6	15.4	15.4	14.2	15.6	14.4	15.1	15.1	15.2
LADMM (iter=15)	22.1	24.2	18.0	23.1	25.2	25.6	15.0	21.7	17.7	25.1	30.6	29.7
LADMM (iter=150)	27.9	29.8	21.6	26.5	30.4	31.3	17.8	24.3	20.5	30.0	34.5	35.7
LADMM (iter=1500)	29.9	31.1	22.2	26.9	31.8	33.2	18.0	25.1	20.7	32.8	36.2	37.8
D-LADMM $(K=15)$	29.5	31.3	21.9	25.9	32.5	35.1	18.8	24.5	19.3	34.3	35.6	38.9

15-layer D-LADMM achieves a performance comparable to, or even slightly better than, the LADMM algorithm with 1500 iterations!

Conclusion

