Diagnosing Bottlenecks in Deep Q-learning Algorithms

Justin Fu*, Aviral Kumar*, Matthew Soh, Sergey Levine

*Equal Contribution
Motivation

- Deep Q-learning methods are notoriously brittle and hard to tune
Motivation

● Deep Q-learning methods are notoriously brittle and hard to tune

● Compared to supervised learning, Q-learning is poorly understood
Motivation

- Deep Q-learning methods are notoriously brittle and hard to tune

- Compared to supervised learning, Q-learning is poorly understood

- Our goal: **empirically** measure the extent of potential theoretical issues and identify effective research directions.
 - Unit test on tractable domains, verify on standard deep RL tasks
How does function approximation affect convergence?

- Divergence is **not** common in practice
How does function approximation affect convergence?

- Divergence is **not** common in practice
- Solution quality deteriorates rapidly with weaker approximators.
 - Bias is **amplified**
How does function approximation affect convergence?

- Divergence is **not** common in practice
- Solution quality deteriorates rapidly with weaker approximators.
 - Bias is **amplified**

![Graph showing solution error with different architectures](image)

- (orange) Error of best solution in model class
- (green) Error of solution found by approximate Q-learning

Amplified Bias
How does function approximation affect convergence?

- Divergence is **not** common in practice
- Solution quality deteriorates rapidly with weaker approximators.
 - Bias is **amplified**

![Diagram](image)
Does overfitting occur?

- Large architectures tend to do *better* even in the presence of overfitting.
Does overfitting occur?

- Large architectures tend to do *better* even in the presence of overfitting.
- The **number of gradient steps** per sample is a simple parameter that greatly affects performance.
Does overfitting occur?

- Large architectures tend to do better even in the presence of overfitting.
- The number of gradient steps per sample is a simple parameter that greatly affects performance.
Does overfitting occur?

- Large architectures tend to do better even in the presence of overfitting.
- The **number of gradient steps** per sample is a simple parameter that greatly affects performance.

![Graph showing returns over iterations for different gradient steps per sample, indicating underfitting and overfitting.]
Does overfitting occur?

- Large architectures tend to do **better** even in the presence of overfitting.
- The **number of gradient steps** per sample is a simple parameter that greatly affects performance.
Can early stopping help?

- We can automatically tune the number of steps using some criterion (such as validation error).
How to choose the sampling distribution?

- On-policy *not* always better.
 - **Intuition:** Narrow distribution; can easily query out-of-distribution values
How to choose the sampling distribution?

- On-policy *not* always better.
 - **Intuition:** Narrow distribution; can easily query out-of-distribution values
- Using data directly from a replay buffer works well, if not better.

Replay Buffer outperforms on-policy data

- Uniform
- Prioritized
- Random Policy
- Optimal Policy
How to choose the sampling distribution?

- On-policy *not* always better.
 - **Intuition:** Narrow distribution; can easily query out-of-distribution values
- Using data directly from a replay buffer works well, if not better.
- **High-entropy** distributions over the state space are generally effective

[Diagram showing different distribution types and their performance]
How to choose the sampling distribution?

- On-policy *not* always better.
 - **Intuition:** Narrow distribution; can easily query out-of-distribution values
- Using data directly from a replay buffer works well, if not better.
- **High-entropy** distributions over the state space are generally effective

Our new work on being robust to static datasets: [arxiv/1906.00949](https://arxiv.org/abs/1906.00949)
Adversarial Feature Matching (AFM)

- How can we create a sampling distribution that incorporates all major insights found so far?
Adversarial Feature Matching (AFM)

- How can we create a sampling distribution that incorporates all major insights found so far?

Key Idea: Learn distribution as a minimax game, with a feature matching constraint

- **Prioritize** on states with high Bellman error
- **Enforce independence of features for different states**

Minimax Objective

Feature Matching

(Function Approx)

(Overfitting + Function Approx)
Adversarial Feature Matching (AFM)

Generous improvement on MuJoCo tasks
Check out Poster #44

Code, Colab Notebooks available online!