Policy Consolidation for Continual Reinforcement Learning

Christos Kaplanis1, Murray Shanahan1,2 and Claudia Clopath1

1Imperial College London, 2DeepMind

11th June 2019
Motivation

Catastrophic Forgetting in Artificial Neural Networks

Agents should cope with both discrete and continuous changes to data distribution without prior knowledge of when/how changes occur.

Test beds: alternating task, single task and multi-agent RL.
Motivation

- Catastrophic Forgetting in Artificial Neural Networks
Motivation

- Catastrophic Forgetting in Artificial Neural Networks

![Diagram showing alternating tasks between Task A and Task B]
Motivation

- Catastrophic Forgetting in Artificial Neural Networks

Task A → Task B → Task A

Questioning mindset icon
Motivation

- Catastrophic Forgetting in Artificial Neural Networks

![Diagram showing alternating tasks and single-task learning with question marks symbol]
Motivation

- Catastrophic Forgetting in Artificial Neural Networks

- Agents should cope with

![Diagram showing alternating tasks and single/multi-agent reinforcement learning test beds.](image-url)
Motivation

- Catastrophic Forgetting in Artificial Neural Networks

- Agents should cope with
 - Both discrete and continuous changes to data distribution
Motivation

- Catastrophic Forgetting in Artificial Neural Networks

- Agents should cope with
 - Both discrete and continuous changes to data distribution
 - No prior knowledge of when/how changes occur
Motivation

- Catastrophic Forgetting in Artificial Neural Networks

- Agents should cope with
 - Both discrete and continuous changes to data distribution
 - No prior knowledge of when/how changes occur

- Test beds: alternating task, single task and multi-agent RL
Policy Consolidation

\[\pi_1 \ldots \pi_N \]

\[\pi_1^{\text{old}} \ldots \pi_N^{\text{old}} \]

Play game
Train agent
KL distillation loss

Store Policy
Recall Policy
Alternating task experiments

[Walker2d-v2, Walker2dBigLeg-v0]

[HalfCheetah-v2, HalfCheetahBigLeg-v0]

[HumanoidSmallLeg-v0, HumanoidBigLeg-v0]
Single task experiments

- **[Walker2d-v2]**
- **[HalfCheetahBigLeg-v0]**
- **[RoboschoolHumanoid-v1]**

Each graph shows the reward over steps for different values of β and clip values. The graphs illustrate the performance of various reinforcement learning algorithms across different tasks, highlighting the impact of hyperparameter tuning.
Multi-agent self-play experiments

(a) Final model vs. self history

(b) PC vs. baselines over training
Future work

- Prioritised consolidation
- Adapt for off-policy learning
Future work

- Prioritised consolidation
Future work

- Prioritised consolidation
- Adapt for off-policy learning