Making Deep Q-learning Approaches Robust to Time Discretization

Corentin Tallec Léonard Blier Yann Ollivier

Université Paris-Sud, Facebook AI Research

June 4, 2019
What happens when **using standard RL methods with small time discretization or high framerate**?

- Usual RL algorithm + high framerate → failure
- Scalability limited by **algorithms**!
 - Better hardware, sensors, actuators → Worse performance
- Contributes to **lack of robustness** of Deep RL:
 - New environment → different framerate → new hyperparameters.

<table>
<thead>
<tr>
<th>Low FPS</th>
<th>High FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why is near continuous Q-learning failing?

There is no continuous time Q-learning

- As $\delta t \to 0$, $Q^{\pi}(s, a) \to V^{\pi}(s)$

- Q^{π} does not depend on actions when $\delta t \to 0$
 \implies Cannot use Q^{π} to select actions!

There is no continuous time ε-greedy exploration

- ε-greedy, $\varepsilon = 1$ pendulum:

 $\begin{array}{c|c|c|c}
 \delta t &=& .05 & \delta t = .0001 \\
 \end{array}$
Can we solve this?

YES

To know how:

Poster #32 this evening

Low FPS High FPS