Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

Raphael Suter1, Đorđe Miladinović1, Bernhard Schölkopf2, Stefan Bauer2
1ETH Zurich, 2MPI for Intelligent Systems

ICML 2019
Contributions

- Causal Model for Representation Learning
- Interventional Robustness Score
- Visualising Robustness
Disentangled Representations

Observation: $\mathbf{X} \in \mathbb{R}^n$

Feature encoding: $\mathbf{Z} = E(\mathbf{X}) \in \mathbb{R}^K$, $n \gg K$

Disentanglement \iff components Z_i represent different sources of variation in \mathbf{X}
Definition: Disentangled Causal Process

Disentangled Causal Mechanisms:

$$\forall g_j \triangledown \quad p(g_i | \text{do}(G_j \leftarrow g_j \triangledown)) = p(g_i) \quad (\neq p(g_i | g_j \triangledown))$$
Unified Causal Model

Generative Factors

$G_1 \quad G_2 \quad \cdots \quad G_{K-1} \quad G_K$

Feature Representation

$Z_1 \quad Z_2 \quad \cdots \quad Z_{K'-1} \quad Z_{K'}$
Robust Representation

relevant factors: G_1, G_2

nuisance factor: G_K

selected features: Z_1, Z_2
Interventional Robustness

Post Interventional Disagreement

\[d \left(\mathbb{E}[Z_{sel}|g_{rel}], \mathbb{E}[Z_{sel}|g_{rel}, \text{do}(G_{nuis} \leftarrow g_{nuis})] \right) \]

Interventional Robustness Score

normalised score \(\in [0, 1] \)
Theoretical Results

• Properties of a disentangled causal process
• IRS estimation from observational data
 \[D = \{(g^{(i)}, x^{(i)})\}_{i=1}^N \]
• Handles confounding \(G_i \leftarrow C \rightarrow G_j \)
• Efficient \(\mathcal{O}(N) \) algorithm
• disentanglement_lib by Locatello et al. (2019):
 github.com/google-research/disentanglement_lib
• Poster: Thurs 06:30 – 09:00 PM at Pacific Ballroom #29