Hybrid Models with Deep and Invertible Features

Eric Nalisnick*, Akihiro Matsukawa*, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan

*equal contribution
Predictive Models

\[p(y \mid x; \theta) \]
Predictive Models

\[p(y|x; \theta) \]

Generative Models

\[p(x; \phi) \]
Can we efficiently combine them to model $p(y, x)$?
Neural Hybrid Model

We define a computationally efficient **hybrid model** by combining *normalizing flows* with *generalized linear models* (GLMs).
We define a computationally efficient \textbf{hybrid model} by combining \textit{normalizing flows} with \textit{generalized linear models} (GLMs).

\[
p(y_n, x_n; \theta) = p(y_n | x_n; \beta, \phi) \ p(x_n; \phi)
\]
Neural Hybrid Model

We define a computationally efficient **hybrid model** by combining *normalizing flows* with *generalized linear models* (GLMs).

\[
p(y_n, x_n; \theta) = p(y_n | x_n; \beta, \phi) \ p(x_n; \phi) = p(y_n | f(x_n; \phi); \beta) p_z(f(x_n; \phi)) \ \frac{\partial f_\phi}{\partial x_n}
\]

Linear Model **Normalizing Flow**
We define a computationally efficient **hybrid model** by combining *normalizing flows* with *generalized linear models* (GLMs).
We define a computationally efficient **hybrid model** by combining *normalizing flows* with *generalized linear models* (GLMs).

Normalizing flow acts as a deep neural feature extractor.
We define a computationally efficient hybrid model by combining normalizing flows with generalized linear models (GLMs).

Flow’s output and params. are used to compute $p(x)$ via change-of-variables.
We define a computationally efficient **hybrid model** by combining *normalizing flows* with *generalized linear models* (GLMs).

Flow’s output is used as the feature vector in a (generalized) linear model, which computes $p(y|x)$.

Neural Hybrid Model
We define a computationally efficient **hybrid model** by combining *normalizing flows* with *generalized linear models* (GLMs).

Optimization objective:

\[
J_\lambda(\theta) = \sum_{n=1}^{N} \left(\log p(y_n|x_n; \beta, \phi) + \lambda \log p(x_n; \phi) \right)
\]
Simulation: Heteroscedastic Regression

Gaussian process fitted to simulated data.
Simulation: Heteroscedastic Regression

Gaussian process fitted to simulated data.

Our model’s predictive component.
Simulation: Heteroscedastic Regression

Gaussian process fitted to simulated data.

Our model’s predictive component.

Our model’s generative component.
For more details, please visit our poster.

Hybrid Models with Deep and Invertible Features

Eric Nalisnick*, Akihiro Matsukawa*, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan

1. Introduction
- Neural networks usually model the conditional distribution $p(y|x)$, where y denotes a label and x features.
- Generative models, on the other hand, represent the distribution over features $p(x)$.
- Can we efficiently combine the two in a hybrid model of the joint distribution $p(y,x)$?

2. Background

Invertible Generative Models (Normalizing Flows)

Invertible generative models (aka, normalizing flows) are a broad class of models defined via the change-of-variables formula. An initial density $p_{0}(x)$ flows through a series of transformations f_{l} and morphs into some usually simpler prior distribution p_{2}.

$$
\log p_{2}(x) = \log p_{0}(f(x; \phi)) + \log \frac{\partial f_{\phi}}{\partial x}
$$

Generalized Linear Models (GLMs)

Generalized linear models (GLMs) model the expected response (or label) y as a transformation of the linear model $g^{-1}(\beta_{1}x)$. We use parameters β and features x.

$$
E[y|x] = g^{-1}(\beta_{1}x)
$$

- Regression: $E[y|x] = \text{identity}(\beta_{1}x)$
- Binary Classification: $E[y|x] = \text{logistic}(\beta_{1}x)$

3. Combining Deep Generative Models and Linear Models

We define a model of the joint distribution $p(y,x)$ by instantiating a GLM on the output of a normalizing flow:

$$
p(y,x; \theta) = p(y|x; \beta, \phi) p(x; \phi)
$$

$$
p(y|x; f(x; \phi); \beta) = p_{f}(f(x; \phi)) \frac{\partial f_{\phi}}{\partial x}
$$

In practice, we add a weight to the flow terms to trade off between predictive and generative behavior.

$$
J_{\phi}(\theta) = \sum_{n=1}^{N} \log p(y|x; \beta, \phi) + \lambda \log p(x; \phi)
$$

4. Simulation

- 1D regression task with heteroscedastic noise. Subfigure (a) shows a Gaussian process and Subfigure (b) shows our Bayesian DGLM. Subfigure (c) shows p(d) learned by the same DGLM (black line) and compares it to a KDE (gray shading).

5. Experiments

Regression on Flight Delay Data Set (N=5 million, D=8):

- This data set exhibits covariate shift between the train and test splits.
- The DGLM’s p(d) component is able to detect this shift (see left).

Classification on MNIST and SVHN:

- λ controls the trade-off between $p(y|x)$ and $p(x)$.
- Hybrid model is better able to detect the OOD inputs via $p(x)$.

Semi-Supervised Learning: MNIST and Half Moons:

- Half-moons simulation: the DGLM leverages unlabeled data to learn a smooth decision boundary (N=0 labeled points).

6. Summary

We defined a neural hybrid model that can efficiently compute both predictive $p(y|x)$ and generative $p(x)$ distributions, in a single feed-forward pass, making it a useful building block for downstream applications of probabilistic deep learning.