NAS-Bench-101: Towards Reproducible Neural Architecture Search

Chris Ying*¹, Aaron Klein*², Esteban Real¹, Eric Christiansen¹, Kevin Murphy¹, Frank Hutter²

¹Google Brain, ²University of Freiburg

*equal contribution

ICML 2019
Motivation

Neural architecture search (NAS) methods are notoriously difficult to reproduce and compare:

1. **Different search spaces and training procedures**
 - Implicit biases imposed by search space and training, different NAS methods optimized for different setups
 - Cannot separate benefit of NAS from the careful design of the search space and training procedures
Motivation

Neural architecture search (NAS) methods are notoriously difficult to reproduce and compare:

1. **Different search spaces** and **training procedures**
 - Implicit biases imposed by search space and training, different NAS methods optimized for different setups
 - Cannot separate benefit of NAS from the careful design of the search space and training procedures

2. **Compute cost** limits number of trials and makes methods inaccessible to most researchers
NAS-Bench-101

- General search space of directed acyclic graphs for cell-based NAS methods
- Exhaustively trained & evaluated all models on CIFAR-10 to create a queryable dataset

≈423K unique cells
* 4 epoch budgets
* 3 repeats
= ≈5M total models trained
NAS-Bench-101

Enables:

1) Studying the landscape of a neural architecture search space as a discrete optimization space

2) Efficient benchmarking of NAS methods by separating the process of searching for models (cheap) from evaluating the models (expensive)
Aggregate Analysis of Search Space

- Search space exhibits *locality*: similar architectures often have similar performance
- Randomly selecting top model is extremely unlikely, but many models within short edit-distance away
Benchmarking

- Querying dataset enables running entire NAS experiments in seconds
- Can investigate the robustness of NAS methods across random repeats
- Results suggest that conclusions may generalize to larger spaces
Pacific Ballroom Poster #12

Dataset and code available at:
https://github.com/google-research/nasbench