A Gradual, Semi-Discrete Approach to Generative Network Training via Explicit Wasserstein Minimization

Yucheng Chen1 Matus Telgarsky1 Chao Zhang1 Bolton Bailey1 Daniel Hsu2 Jian Peng1

1Department of Computer Science, UIUC, Urbana, IL
2Department of Computer Science, Columbia University, New York, NY

International Conference on Machine Learning
June 12, 2019
Explicit Wasserstein Minimization

- **Goal:** To train a generator network g minimizing the Wasserstein distance $W(g\#\mu, \nu)$ between the generated distribution $g\#\mu$ and the target distribution ν, where μ is a simple distribution such as uniform or Gaussian.
 - Indirectly pursued by WGAN (Arjovsky et al., 2017)

- **Motivation:** If the optimal transport plan between $g\#\mu$ and ν can be computed, why not use it to explicitly minimize $W(g\#\mu, \nu)$ without any adversarial procedure?
Key Observations

In the “semi-discrete setting”, where \(g \# \mu \) is continuous and \(\nu \) is discrete (denoted as \(\hat{\nu} \)),

1. \(W(g \# \mu, \hat{\nu}) \) is realized by a **deterministic optimal transport mapping** \(T \) between \(g \# \mu \) and \(\hat{\nu} \), and

2. fitting the generated data \(g \# \mu \) towards the corresponding target points \(T \# g \# \mu \) may lead to a new generator \(g' \) with lower Wasserstein distance \(W(g' \# \mu, \hat{\nu}) \).

An algorithm iterating these two steps (called as “OTS” and “FIT”) would explicitly minimize \(W(g \# \mu, \hat{\nu}) \).
A Synthetic Example
The Algorithm

- **OTS:** Compute the semi-discrete optimal transport between \(g \# \mu \) and \(\hat{\nu} \) by minimizing (Genevay et al., 2016)

\[
- \int_X \min_i (c(x, y_i) - \hat{\psi}_i) dg \# \mu(x) - \frac{1}{N} \sum_{i=1}^N \hat{\psi}_i.
\]

and the Monge OT plan is given by \(T(x) := y_{\arg\min_i} c(x, y_i) - \hat{\psi}_i \).

- **FIT:** Find a new generator \(g' \) by minimizing

\[
\int_Z c(g'(z), T(g(z))) d\mu(z).
\]

- **Overall algorithm:** Iterate OTS and FIT.
Experimental Results

- MNIST: Better visual quality, better WD/IS/FID (even with small MLP architectures!)
- CelebA/CIFAR: Worse visual quality, but still lower WD
- Lower Wasserstein distance does not always lead to better visual quality: importance of regularizing discriminator in GANs (Huang et al., 2017; Bai et al., 2019).

Thank you!

Poster: Pacific Ballroom #4
6:30PM, Jun 12