BayesNAS: A Bayesian Approach for Neural Architecture Search

Hongpeng Zhou\(^1\), Minghao Yang\(^1\), Jun Wang\(^2\), Wei Pan\(^1\)

1. Department of Cognitive Robotics, Delft University of Technology, Netherlands
2. Department of Computer Science, University College London, UK
Correspondence to: Wei Pan <wei.pan@tudelft.nl>
Outline

• What we achieve
• Why we study
• How to realize
• Experiment
• Conclusion and future work
Outline

• What we achieve
• Why we study
• How to realize
• Experiment
• Conclusion and future work
What are the highlights of this paper?

• **Fast:**
 Find the architecture on CIFAR-10 within *only 0.2 GPU days* using a *single GPU*.

• **Simple:**
 Train the overparameterized network for only *one epoch* then update the architecture.

• **First Bayesian method for one-shot NAS:**
 Apply Laplace approximation;
 Propose *fast Hessian calculation methods* for convolutional layers.

• **Dependencies between nodes:**
 Model dependencies between nodes *ensuring a connected derived graph*.
Outline

• What we achieve
• Why we study
• How to realize
• Experiment
• Conclusion and future work
Why?

- **Why use one shot method?**
 - Reduce search time without separate training, compared with reinforcement learning, neuroevolutionary approach;
 - NAS is treated as Network Compression.

- **Why employ Bayesian learning?**
 - It could prevent overfitting and does not require tuning a lot of hyperparameters;
 - Hierarchical sparse priors can be used to model the architecture parameters;
 - The priors can promote sparsity and model the dependency between nodes.

- **Why apply Laplace approximation?**
 - Easy implementation;
 - Close relationship between Hessian metric and network compression;
 - Acceleration effect to training convergence by second order optimization algorithm.

• Why consider dependency?

• Most current one-shot methods disregard the dependencies between a node and its predecessors and successors, which may result in a disconnected graph.

• Example:

If node 2 is redundant, the expected graph has no connection from node 2 to 3 and from node 2 to 4.

Figure 1. Disconnected graph caused by disregard for dependency

Figure 2: Expected connected graph
Outline

• What we achieve
• Why we study
• How to realize
• Experiment
• Conclusion and future work
How to realize dependency?

A multi-input-multi-output motif is abstract the building block of any Directed Acyclic Graph (DAG). Any path or network can be constructed by this motif, as shown in Figure 4.(c).

Proposition for Dependency: there is information flow from node j to k if and only if at least one operation of at least one predecessor of node j is non-zero and w_{jk} is also nonzero.

Specific explanation:

- **Figure 3(a):** predecessor’s (e_{12}) has superior control over its successors (e_{23} and e_{24});
- **Figure 3(b):** design switches s_{12}, s_{23} and s_{24} to determine "on or off" of the edge;
- **Figure 3(d):** prioritize zero operation over other non-zero operations by adding one more node i' between node i and j.

Figure 3. An illustration for dependency.
• How to apply Bayesian learning search strategy?

- Model architecture parameters with hierarchical automatic relevance determination (HARD) priors.

\[p(w | s) = \prod_{j < k} \prod_{o \in \mathcal{O}} \prod_{o' \in \mathcal{O}} \mathcal{N}(w_{jk}^{o'}, \sum_{i < j} w_{ij}^{o} | 0, \gamma_{jk}^{o'}) \]

- The cost function is maximum likelihood over the data D with regularization whose intensity is controlled by the reweighted coefficient \(\omega \):

\[\mathcal{L}_D = E_D(\cdot) + \lambda_w \sum_{j < k} \sum_{o \in \mathcal{O}} \| \omega_{jk}^{o'}(t) w_{jk}^{o'} \|_1 + \lambda \| \mathcal{W} \|_2^2 \]

• How to compute the Hessian?

- By converting convolutional layers to fully-connected layers, a recursive and efficient method is proposed to compute the Hessian of convolutional layers and architecture parameter.
Byproduct:

- Extension to Network Compression

Figure 4. Structure sparsity

- By enforcing various structural sparsity, extremely sparse models can be obtained without accuracy loss.
- This can be effortlessly integrated into BayesNAS to find sparse architecture for resource-limited hardware.
Outline

• What we achieve
• Why we study
• How to realize
• Experiment
• Conclusion and future work
Experiment:

- **CIFAR10-experiment setting:**
 - The setup for proxy tasks follows DARTS and SNAS;
 - The backbone for proxyless search is PyramidNet;
 - Apply BayesNAS to search the best convolutional cells/optimal paths in a complete network;
 - A network constructed by stacking learned cells/paths is retrained.

Figure 5. Normal and reduction cell found in proxy task

Figure 6. Tree cells found in proxyless task

Experiment:

- Competitive test error rate against state-of-the-art techniques.
- Significant drop in search time.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Test Error (%)</th>
<th>Params (M)</th>
<th>Search Cost (GPU days)</th>
<th>Search Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>DenseNet-BC (Huang et al., 2017)</td>
<td>3.46</td>
<td>25.6</td>
<td>-</td>
<td>manual</td>
</tr>
<tr>
<td>NASNet-A + cutout (Zoph et al., 2018)</td>
<td>2.65</td>
<td>3.3</td>
<td>1800</td>
<td>RL</td>
</tr>
<tr>
<td>AmoebaNet-B + cutout (Real et al., 2019)</td>
<td>2.55 ± 0.05</td>
<td>2.8</td>
<td>3150</td>
<td>evolution</td>
</tr>
<tr>
<td>Hierarchical Evo (Liu et al., 2018b)</td>
<td>3.75 ± 0.12</td>
<td>15.7</td>
<td>300</td>
<td>evolution</td>
</tr>
<tr>
<td>PNAS (Liu et al., 2018a)</td>
<td>3.41 ± 0.09</td>
<td>3.2</td>
<td>225</td>
<td>SMBO</td>
</tr>
<tr>
<td>ENAS + cutout (Pham et al., 2018)</td>
<td>2.89</td>
<td>4.6</td>
<td>0.5</td>
<td>RL</td>
</tr>
<tr>
<td>Random search baseline + cutout (Liu et al., 2019b)</td>
<td>3.29 ± 0.15</td>
<td>3.2</td>
<td>1</td>
<td>random</td>
</tr>
<tr>
<td>DARTS (2nd order bi-level) + cutout (Liu et al., 2019b)</td>
<td>2.76 ± 0.09</td>
<td>3.4</td>
<td>1</td>
<td>gradient</td>
</tr>
<tr>
<td>SNAS (single-level) + moderate con + cutout (Xie et al., 2019)</td>
<td>2.85 ± 0.02</td>
<td>2.8</td>
<td>1.5</td>
<td>gradient</td>
</tr>
<tr>
<td>DSO-NAS-share+cutout (Zhang et al., 2019b)</td>
<td>2.84 ± 0.07</td>
<td>3.0</td>
<td>1</td>
<td>gradient</td>
</tr>
<tr>
<td>Proxyless-G + cutout (Cai et al., 2019)</td>
<td>2.08</td>
<td>5.7</td>
<td>1</td>
<td>gradient</td>
</tr>
<tr>
<td>BayesNAS + cutout + $\lambda^w = 0.01$</td>
<td>3.02 ± 0.04</td>
<td>2.59 ± 0.23</td>
<td>0.2</td>
<td>gradient</td>
</tr>
<tr>
<td>BayesNAS + cutout + $\lambda^w = 0.007$</td>
<td>2.90 ± 0.05</td>
<td>3.10 ± 0.15</td>
<td>0.2</td>
<td>gradient</td>
</tr>
<tr>
<td>BayesNAS + cutout + $\lambda^w = 0.005$</td>
<td>2.81 ± 0.04</td>
<td>3.40 ± 0.62</td>
<td>0.2</td>
<td>gradient</td>
</tr>
<tr>
<td>BayesNAS + TreeCell-A + Pyramid backbone + cutout</td>
<td>2.41</td>
<td>3.4</td>
<td>0.1</td>
<td>gradient</td>
</tr>
</tbody>
</table>

less search time
• **Transferability to ImageNet:**

A network of 14 cells is trained for 250 epochs with batch size 128:

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Test Error (%) top-1</th>
<th>Test Error (%) top-5</th>
<th>Params (M)</th>
<th>Search Cost (GPU days)</th>
<th>Search Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception-v1 (Szegedy et al., 2015)</td>
<td>30.2</td>
<td>10.1</td>
<td>6.6</td>
<td>–</td>
<td>manual</td>
</tr>
<tr>
<td>MobileNet (Howard et al., 2017)</td>
<td>29.4</td>
<td>10.5</td>
<td>4.2</td>
<td>–</td>
<td>manual</td>
</tr>
<tr>
<td>ShuffleNet 2× (v1) (Zhang et al., 2018)</td>
<td>29.1</td>
<td>10.2</td>
<td>~5</td>
<td>–</td>
<td>manual</td>
</tr>
<tr>
<td>ShuffleNet 2× (v2) (Zhang et al., 2018)</td>
<td>26.3</td>
<td>–</td>
<td>~5</td>
<td>–</td>
<td>manual</td>
</tr>
<tr>
<td>NASNet-A (Zoph et al., 2018)</td>
<td>26.0</td>
<td>8.4</td>
<td>5.3</td>
<td>1800</td>
<td>RL</td>
</tr>
<tr>
<td>NASNet-B (Zoph et al., 2018)</td>
<td>27.2</td>
<td>8.7</td>
<td>5.3</td>
<td>1800</td>
<td>RL</td>
</tr>
<tr>
<td>NASNet-C (Zoph et al., 2018)</td>
<td>27.5</td>
<td>9.0</td>
<td>4.9</td>
<td>1800</td>
<td>RL</td>
</tr>
<tr>
<td>AmoebaNet-A (Real et al., 2019)</td>
<td>25.5</td>
<td>8.0</td>
<td>5.1</td>
<td>3150</td>
<td>evolution</td>
</tr>
<tr>
<td>AmoebaNet-B (Real et al., 2019)</td>
<td>26.0</td>
<td>8.5</td>
<td>5.3</td>
<td>3150</td>
<td>evolution</td>
</tr>
<tr>
<td>AmoebaNet-C (Real et al., 2019)</td>
<td>24.3</td>
<td>7.6</td>
<td>6.4</td>
<td>3150</td>
<td>evolution</td>
</tr>
<tr>
<td>PNAS (Liu et al., 2018a)</td>
<td>25.8</td>
<td>8.1</td>
<td>5.1</td>
<td>~225</td>
<td>SMBO</td>
</tr>
<tr>
<td>DARTS (Liu et al., 2019b)</td>
<td>26.9</td>
<td>9.0</td>
<td>4.9</td>
<td>4</td>
<td>gradient</td>
</tr>
<tr>
<td>BayesNAS (λ_θ^w = 0.01)</td>
<td>28.1</td>
<td>9.4</td>
<td>4.0</td>
<td>0.2</td>
<td>gradient</td>
</tr>
<tr>
<td>BayesNAS (λ_θ^w = 0.007)</td>
<td>27.3</td>
<td>8.4</td>
<td>3.3</td>
<td>0.2</td>
<td>gradient</td>
</tr>
<tr>
<td>BayesNAS (λ_θ^w = 0.005)</td>
<td>26.5</td>
<td>8.9</td>
<td>3.9</td>
<td>0.2</td>
<td>gradient</td>
</tr>
</tbody>
</table>
Outline

• What we achieve
• Why we study
• How to realize
• Experiment
• Conclusion and future work
Conclusion and future work:

- **First Bayesian approach for one-shot NAS:** BayesNAS can prevent overfitting, promote sparsity and model dependencies between nodes ensuring a connected derived graph.

- **Simple and fast search:** BayesNAS is an iteratively re-weighted l1 type algorithm. Fast Hessian calculation methods are proposed to accelerate the computation. Only one epoch is required to update hyper-parameters.

- Our current implementation is still inefficient by caching all the feature maps in memory. The **searching time could be future reduced** by computing Hessian with backpropagation.
Thank you!

Paper: 3866
Contact: Wei Pan <wei.pan@tudelft.nl>